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Abstract: Patient work of breathing is of significant clinical interest for several decades. It is particularly 

relevant when gauging patient-ventilator interaction, patient-specific level of mechanical ventilation (MV) 

support, and weaning from full support to spontaneous breathing MV modes or off of MV entirely. Current 

monitoring approaches require additional equipment (usually expensive), well-trained clinicians (to collect 

and interpret these signals), or/and extra clinical interventions (increases difficulty and cost). This study 

extends a digital twin model to estimate patient spontaneous breathing effort (𝑃̂𝑃𝑝𝑝 curve) with a previously 

proposed model-based estimation method using b-spline functions. Data from 22 patients for two assisted 

MV modes, NAVA (neurally adjusted ventilatory assist) and PSV (pressure support ventilation), are 

employed. Estimation results are compared to breathing effort reflected by electrical activity of the 

diaphragm (EAdi) signals. Physiologically-relevant correlations in identified 𝑃̂𝑃𝑝𝑝 curve area (negative and 

positive) and EAdi signal can be found in both NAVA and PSV data analysis. While 𝑃̂𝑃𝑝𝑝 curves yield more 

negative area (larger PRCTneg), the corresponding breaths tend to have lower peak EAdi values and area 

under curve of EAdi signal (AUC[EAdi]) during inspiration. R2 values for NAVA data yield an interquartile 

range (IQR) from 0.31 to 0.68 for peak EAdi versus PRCTneg and 0.40 to 0.61 for AUC[EAdi] versus 

PRCTneg, respectively. Results differ between NAVA and PSV modes based on poorer patient-ventilator 

interaction observed in PSV, while the same level of expected physiological relevance is still observed. 

Overall, the extended digital twin model with b-spline functions to quantify patient-specific inspiratory 

effort shows promising application in helping guide weaning or changes in MV settings at bedside for 

assisted breathing modes of MV. In future, the identified 𝑃̂𝑃𝑝𝑝 curves could also potentially be used to replace 

the need for costly measurement of EAdi signals.  
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1. INTRODUCTION 

EAdi (electrical activity of the diaphragm) is one extensively 

used method to monitor and study respiratory muscles 

activities with multiple electrodes and a nasogastric tube 

(Doorduin, J., et al., 2013, Jonkman, A.H., et al., 2020). While 

effective and reliable, proper positioning and regularly 

adjustment are necessary to ensure correct recordings (Vargas, 

M., et al., 2022), requiring more clinician-involved work and 

training. Other clinically adopt signals, such as esophageal 

pressure (Pes) (Akoumianaki, E., et al., 2014, Telias, I., et al., 

2019), have similar technical concerns (Akoumianaki, E., et 

al., 2014, Jansen, D., et al., 2018). Moreover, most signal 

monitoring methods requires intubation or additional devices 

and thus less comfort and convenience for clinical use.  

Several researches (physiologically relevant models and 

derived variables) and clinical tools (invasive and non-

invasive measurements) are designed to monitor respiratory 

drive and respiratory muscle unloading (Albani, F., et al., 

2021, Doorduin, J., et al., 2013, Jansen, D., et al., 2018, Knopp, 

J.L., et al., 2021, Telias, I., et al., 2020), aiming for a better 

understanding and novel insight for patient lung mechanics 

interaction with ventilator support. However, they often need 

additional equipment, well-trained clinicians (to collect and 

interpret these signals), or extra clinical treatment applications, 

increasing the difficulty and cost in routinely use. 

Non-invasive, derived variables from ventilators are 
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derived variables) and clinical tools (invasive and non-

invasive measurements) are designed to monitor respiratory 

drive and respiratory muscle unloading (Albani, F., et al., 

2021, Doorduin, J., et al., 2013, Jansen, D., et al., 2018, Knopp, 

J.L., et al., 2021, Telias, I., et al., 2020), aiming for a better 

understanding and novel insight for patient lung mechanics 

interaction with ventilator support. However, they often need 

additional equipment, well-trained clinicians (to collect and 

interpret these signals), or extra clinical treatment applications, 

increasing the difficulty and cost in routinely use. 

Non-invasive, derived variables from ventilators are 

meanwhile studied to offer better or equally effective 

respiratory muscle activities while minimising cost and 

inconvenience (Jansen, D., et al., 2018, Telias, I., et al., 2020, 

Telias, I., et al., 2019). WOB (work of breathing) and PTP 

(pressure-time product) are mostly considered to be capable to 

assess respiratory effort (Akoumianaki, E., et al., 2014). 

However, most of them, including WOB and PTP, are 

recommended to calculate with Pes or Pdi (transdiaphragmatic 

pressure) instead of airway pressure (Akoumianaki, E., et al., 

2014), which thus still need invasive procedure.  

In this study, a digital twin model is extended with b-splines 

function (Knopp, J.L., et al., 2021) with two assisted 

ventilation modes, Neurally Adjusted Ventilator Assist 

(NAVA) and pressure support (PSV), for patient-specific 

respiratory drive estimation. The overall goal is estimate 

patient spontaneous effort with only non-invasive breath data 

and thus to ease burden on clinicians work and equipment cost, 

as well as technique trainings and problems coming behind. 

The outcome is compared with recorded EAdi signal and clear 

trends/correlations are observed.  

2. METHODS 

2.1 Patient Effort Estimation Model  

This patient effort estimation model is based on the well-

validated digital twin model in (Zhou, C., et al., 2021): 

𝑓𝑓𝑉𝑉(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉̈𝑉 + 𝑅𝑅𝑉̇𝑉 + 𝐾𝐾𝑒𝑒𝑉𝑉 + 𝐾𝐾ℎ1𝑉𝑉ℎ1 + 𝐾𝐾ℎ2𝑉𝑉ℎ2 (1) 

where V is the volume of air delivered to the lungs (𝑉̈𝑉 and 𝑉̇𝑉 

are the corresponding second and first derivatives of V), Vh1 

and Vh2 are hysteretic volume response during inspiration and 

expiration, respectively, Ke represents the alveolar recruitment 

elastance, Kh1 and Kh2, are determined by two nonlinear 

hysteretic springs for alveolar hysteresis elastance during 

inspiration and expiration, respectively, R is the airway 

resistance, and PEEP is the positive end-expiratory pressure. 

𝑓𝑓𝑉𝑉(𝑡𝑡)  is the steady-state input force (driving pressure over 

time) and identified at baseline PEEP level.  

An additional negative term, 𝑃̂𝑃𝑝𝑝, is added to represent pleural 

driving pressure and thus to estimate patient spontaneous 

effort (Knopp, J.L., et al., 2021): 

𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉̈𝑉 + 𝑅𝑅𝑉̇𝑉 + 𝐾𝐾𝑒𝑒𝑉𝑉 + 𝐾𝐾ℎ1𝑉𝑉ℎ1 + 𝐾𝐾ℎ2𝑉𝑉ℎ2 + 𝑃̂𝑃𝑝𝑝 (2) 

This 𝑃̂𝑃𝑝𝑝  term is modelled using 2nd order (d = 2) b-spline 

functions with a knot width (kw) of 0.05s to define the 

unknown, patient-specific 𝑃̂𝑃𝑝𝑝: 

𝑃̂𝑃𝑝𝑝 =  ∑ −𝑃𝑃𝑠𝑠,𝑖𝑖Φ𝑖𝑖,2(𝑡𝑡)𝑀𝑀
𝑖𝑖=1 (3)  

Where 𝑃𝑃𝑠𝑠,𝑖𝑖 are constant coefficients identified from measured 

data. 𝑀𝑀 = 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑤𝑤

+ 𝑑𝑑 by b-spline functions setting. 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the 

inspiration duration for each breath in seconds. The 

term Φ𝑖𝑖,2(𝑡𝑡) using a 2nd order definition is calculated: 

Φ𝑖𝑖,𝑑𝑑(𝑡𝑡) = 𝑡𝑡 − 𝑇𝑇𝑖𝑖
𝑇𝑇𝑖𝑖+𝑑𝑑 − 𝑇𝑇𝑖𝑖

Φ𝑖𝑖,𝑑𝑑−1(𝑡𝑡) + 𝑇𝑇𝑖𝑖+𝑑𝑑+1 − 𝑡𝑡
𝑇𝑇𝑖𝑖+𝑑𝑑+1 − 𝑇𝑇𝑖𝑖+1

Φ𝑖𝑖+1,𝑑𝑑−1(𝑡𝑡)
, 𝑑𝑑 ≥ 1

 

Φ𝑖𝑖,0(𝑡𝑡) = {1,          𝑇𝑇𝑖𝑖 < 𝑡𝑡 < 𝑇𝑇𝑖𝑖 + 1
0,                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4) 

Where 𝑇𝑇𝑖𝑖  are equally spaced division points in time calculated 

by 
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑤𝑤
. Finally, (1) can be defined (Knopp, J.L., et al., 2021): 

𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉̈𝑉 + 𝑅𝑅𝑉̇𝑉 + 𝐾𝐾𝑒𝑒𝑉𝑉 + 𝐾𝐾ℎ1𝑉𝑉ℎ1 + 𝐾𝐾ℎ2𝑉𝑉ℎ2
+ ∑ −𝑃𝑃𝑠𝑠,𝑖𝑖Φ𝑖𝑖,2(𝑡𝑡)𝑀𝑀

𝑖𝑖=1 (5)  

With ventilator breath data (airway pressure and flow), linear 

least squares regression can identify patient-specific, lung 

mechanics variables and 𝑃̂𝑃𝑝𝑝  (by identifying the 𝑃𝑃𝑠𝑠,𝑖𝑖  terms), 

using the Matlab (Mathworks, Natick, MA, USA) lsqlin 

function, and constraining elements of 𝑃𝑃𝑠𝑠,𝑖𝑖 > 0 (𝑃̂𝑃𝑝𝑝 negative) to 

ensure identifiability (Docherty, P.D., et al., 2011).  

2.2 Analysis 

22 patients under both NAVA and PSV are analyzed in this 

approach. Data from the same 20 breaths per patient under 

NAVA ventilation used in (Knopp, J.L., et al., 2021) are tested 

and outcomes are compared, thus analysing the differences 

between lung mechanics models employed. In addition, PSV 

data is also studied for each patient with the first 20 breaths, 

which was not used in previous work (Knopp, J.L., et al., 

2021), providing a comparison between modes for the overall 

modelling approach.  

2.2.1 Negative constraint on b-splines functions 

This model currently only focuses on the inspiration phase of 

each breath, while originally the first 75% of identified 𝑃𝑃𝑠𝑠,𝑖𝑖 
parameters during inspiration are constrained to be positive (𝑃̂𝑃𝑝𝑝 

negative) and the rest 25% is not constrained in previous study 

(Knopp, J.L., et al., 2021). This constraint is applied for each 

studied breath per patient and captures negative patient 

spontaneous effort and any patient resistance to ventilator 

action in the unconstrained portion.  

In this study, the amount of values constrained are tested from 

0%, 10%, …, 100%, where 0% represents free identification 

of 𝑃𝑃𝑠𝑠,𝑖𝑖 values and likely identifiability issues, and 100% forces 

this term to be strictly negative capturing only breathing effort. 

An example plot for b-splines functions yielding 𝑃̂𝑃𝑝𝑝  curve 

during inspiration phase is presented in Figure 1 with negative 

constraint for −𝑃𝑃𝑠𝑠,𝑖𝑖 is 70%.  

2.2.2 EAdi signal analysis 

Clinical EAdi signals available in this studied trial for both 

NAVA and PSV provide a reference for muscle action for 

inspiratory effort. In particular, peak EAdi and AUC[EAdi] 

capture measured metrics of inspiratory effort for comparison 

to model-based metric. Thus, collected EAdi signal offer the 

opportunity to assess the resulting model-based inspiratory 

breathing effort identified. 

Note, since the studied 𝑃̂𝑃𝑝𝑝 curves only focus inspiration phase 

to identify patient inspiratory effort, AUC[EAdi] is limited to 

inspiration phase to keep consistent, as presented in Figure 2. 
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Figure 1. Identified weights (−𝑃𝑃𝑠𝑠,𝑖𝑖) for b-splines (Φ𝑖𝑖,2) and yielded 

𝑃̂𝑃𝑝𝑝 curve with associated measured airway pressure, 𝑃𝑃(𝑡𝑡), during 

inspiration phase. Negative constraint is 70% for −𝑃𝑃𝑠𝑠,𝑖𝑖, b-splines. 

 
Figure 2. The analysed variables in EAdi signal over a complete 

breath. 

2.2.3 𝑃̂𝑃𝑝𝑝 curve analysis 

While 𝑃𝑃𝑠𝑠,𝑖𝑖  values constraint level is adjusted and tested, 𝑃̂𝑃𝑝𝑝 

curve can have positive areas (𝑃̂𝑃𝑝𝑝  values > 0) and negative 

areas (𝑃̂𝑃𝑝𝑝 values ≤ 0). Thus, 𝑃̂𝑃𝑝𝑝 curve is separated into positive 

and negative areas while the area is calculated as its product 

over time (denoted as AUC [𝑃̂𝑃𝑝𝑝 ]pos and AUC[ 𝑃̂𝑃𝑝𝑝 ]neg), as 

presented in Figure 3. To note, AUC[𝑃̂𝑃𝑝𝑝]neg is calculated as a 

positive value without regard to its under-zero curve.  

Finally, the area under the complete 𝑃̂𝑃𝑝𝑝  curve (AUC[𝑃̂𝑃𝑝𝑝]) is 

calculated as the sum of AUC[𝑃̂𝑃𝑝𝑝]pos and AUC[𝑃̂𝑃𝑝𝑝]neg, defined: 
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Figure 1. Identified weights (−𝑃𝑃𝑠𝑠,𝑖𝑖) for b-splines (Φ𝑖𝑖,2) and yielded 

𝑃̂𝑃𝑝𝑝 curve with associated measured airway pressure, 𝑃𝑃(𝑡𝑡), during 

inspiration phase. Negative constraint is 70% for −𝑃𝑃𝑠𝑠,𝑖𝑖, b-splines. 
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Figure 4. Peak EAdi values for tested breaths (440 breaths in total) grouped via PRCTneg limit (0.1, 0.2, …, 0.9, 1.0) with 𝑃𝑃𝑝𝑝  negative 

constraint = 50%. Patient data under NAVA mode are used. 

 
Figure 5. AUC[EAdi] for tested breaths (440 breaths in total) grouped via PRCTneg limit (0.1, 0.2, …, 0.9, 1.0) with 𝑃𝑃𝑝𝑝  negative constraint = 

50%. Patient data under NAVA mode are used.

Table 1 provides the correlation analysis with R2 values among 

studied variables, PRCTneg, AUC[ 𝑃̂𝑃𝑝𝑝 ]neg, peak EAdi, and 

AUC[EAdi] while 𝑃̂𝑃𝑝𝑝 negative constraint levels = 0%, 10%, 

…, 100% with NAVA data. Higher R2 values are observed 

with PRCTneg versus AUC[EAdi] with constraint levels of 

50%-90%. 

Table 1. R2 values (median [IQR]) for PRCTneg and 

AUC[    ]neg versus AUC[EAdi] and peak EAdi with     

negative constraint levels = 0%, 10%, …, 100%. Patient data 

under NAVA mode are used. 

𝑃̂𝑃𝑝𝑝 

negative 

constraint 

level 

R2 values of 

PRCTneg 

vs 

AUC[EAdi] 

PRCTneg 

vs 

peak EAdi 

AUC[𝑃̂𝑃𝑝𝑝]neg 

vs 

AUC[EAdi] 

AUC[𝑃̂𝑃𝑝𝑝]neg 

vs  

peak EAdi 

0% 
0.19 [0.06 

0.32] 

0.12 [0.05 

0.22] 

0.02 [0.01 

0.19] 

0.04 [0.01 

0.18] 

10% 
0.2 [0.08 

0.37] 

0.13 [0.06 

0.23] 

0.02 [0.01 

0.21] 

0.05 [0.01 

0.18] 

20% 
0.19 [0.09 

0.32] 

0.15 [0.06 

0.25] 

0.02 [0.01 

0.17] 

0.04 [0.01 

0.16] 

30% 
0.29 [0.15 

0.42] 

0.15 [0.07 

0.33] 

0.04 [0.01 

0.17] 

0.04 [0.02 

0.1] 

40% 
0.37 [0.17 

0.57] 

0.2 [0.13 

0.51] 

0.04 [0.01 

0.18] 

0.04 [0.01 

0.11] 

50% 
0.53 [0.19 

0.64] 

0.36 [0.21 

0.61] 

0.06 [0.03 

0.28] 

0.05 [0.01 

0.19] 

60% 
0.5 [0.32 

0.69] 

0.45 [0.31 

0.67] 

0.09 [0.03 

0.31] 

0.06 [0.01 

0.23] 

70% 
0.58 [0.36 

0.74] 

0.47 [0.33 

0.65] 

0.12 [0.04 

0.33] 

0.12 [0.02 

0.24] 

80% 
0.58 [0.32 

0.68] 

0.50 [0.4 

0.6] 

0.16 [0.05 

0.32] 

0.17 [0.03 

0.28] 

90% 
0.46 [0.34 

0.6] 

0.43 [0.37 

0.59] 

0.15 [0.04 

0.37] 

0.17 [0.03 

0.31] 

100% 
0 [0 0] 0 [0 0] 0.17 [0.03 

0.35] 

0.14 [0.04 

0.3] 

3.2 Outcome with PSV data 

Overall, the outcome with PSV is more variable compared 

with NAVA. To contrast, the R2 values for PSV data are much 
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lower than NAVA data stated in Table 1, with a maximum 

median R2 value of 0.21.  

However, trends are still observed, differing only based on 

PRCTneg limits. Figure 6 presents the same analysis in Figure 

4 for PSV data as an example. It can be seen when PRCTneg 

limit = 0.1-0.4, higher peak EAdi breaths tend to locate in 

PRCTneg ≥ limit group. While PRCTneg limit ≥ 0.7, higher peak 

EAdi breaths tend to locate in PRCTneg < limit group, 

conversely.  

For AUC[EAdi] analysis,  with constraint levels of 30% and 

40%, lower AUC[EAdi] (≤ ~2000μV*s) tends to locate in 

PRCTneg ≥ limit group while PRCTneg limit = 0.3-1.0. 

However, with constraint levels of 50% and 60%, same trends 

are observed with PRCTneg limit = 0.4, while opposite trends 

(lower AUC[EAdi] tends to locate in PRCTneg < limit group) 

are observed with PRCTneg limit = 0.9-1.0. 

In short, trends are observed for PRCTneg versus EAdi signal 

analysis for both NAVA and PSV data. The trend is consistent 

across PRCTneg limits in NAVA, while two trends are 

observed and being opposite for PRCTneg limit < 0.4 and 

PRCTneg limit ≥ 0.7 in PSV, which is thus more variable. This 

variability and the low correlation R2 values (𝑃̂𝑃𝑝𝑝 curve versus 

EAdi signal) match other studies showing PSV did not match 

tidal volume and EAdi well.

 
Figure 6. Peak EAdi values for tested breaths (440 breaths in total) grouped via PRCTneg limit (0.1, 0.2, …, 0.9, 1.0), while 𝑃̂𝑃𝑝𝑝 negative 

constraint level = 50%. Patient data under PSV mode are used.

4. DISCUSSION 

The negative area of 𝑃̂𝑃𝑝𝑝 has been considered as representation 

for patient negative spontaneous breathing work in original 

approach (Knopp, J.L., et al., 2021). Considering it is a patient-

specific and breath-specific variable, PRCTneg is analysed in 

Figures 4-6 and Table 1 for NAVA and PSV data.   

An appreciable correlation for NAVA data is observed for 

PRCTneg versus AUC[EAdi], where a 𝑃𝑃𝑝𝑝  negative constraint 

level of 70%, with a median R2 value of 0.58 and IQR = 0.36-

0.74 compared to R2 values in (Knopp, J.L., et al., 2021) with 

median 0.55 and IQR = 0.38-0.70. The 60% and 80% 

constraint levels also offers similar or better performance, as 

presented in Table 1.   

Then, Figure 4 as an example shows a trend that breaths have 

larger PRCTneg tend to yield lower peak EAdi values (≤ 

3000μV), when 𝑃𝑃𝑝𝑝  negative constraints = 30%-60%. 

Meanwhile, this trend is also found for PRCTneg versus 

AUC[EAdi] when constraint level is between 10%-60%. 

Therefore, for NAVA data, the 60% 𝑃̂𝑃𝑝𝑝  negative constraint 

level yielded the overall best compromise, with strong 

correlation between peak EAdi and 𝑃̂𝑃𝑝𝑝  values and 

physiologically-relevant meaning for 𝑃̂𝑃𝑝𝑝 curve negative area.  

Compared with NAVA ventilation, which allows proportional 

assist basing on measured EAdi signals, PSV simply delivers 

airway flow up to a targeted driving pressure (peak inspiratory 

pressure - PEEP). There is thus significant mismatch for many 

patients between inspiratory effort measured by EAdi and the 

tidal volume achieved (Chiew, Y., et al., 2013, Chiew, Y.S., et 

al., 2011, Moorhead, K., et al., 2013, Piquilloud, L., et al., 

2011). This mismatch is expected to yield a correspondingly 

lower correlation between inspiratory effort identified, or 

measured via EAdi, and outcome work of breathing or tidal 

volume. 

The correlations with PSV data all resulted in lower R2 values 

than NAVA outcome, with maximum median R2 value of 0.21 

to 0.58. However, trends observed between EAdi signals and 

PRCTneg for NAVA, Figures 4 and 5, can still be observed in 

PSV while being relatively more variable. The results match 

expectations from prior studies (Chiew, Y., et al., 2013, 

Chiew, Y.S., et al., 2011, Moorhead, K., et al., 2013), and as a 

result of observed poorer patient-ventilator interaction 

(Piquilloud, L., et al., 2011). The variability between patients 

is based on how well NAVA and PSV provided good patient-

ventilator matching and interaction (Chiew, Y., et al., 2013, 

Chiew, Y.S., et al., 2011, Moorhead, K., et al., 2013).  

Overall, physiologically-relevant correlations in 𝑃̂𝑃𝑝𝑝  curve 

negative area and EAdi signal can be found in both NAVA and 

PSV data analysis. A 𝑃̂𝑃𝑝𝑝 negative constraint level of 40-70% is 

required to ensure identifiability and physiological relevance 

in comparison to measured inspiratory effort in the studied 
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lower than NAVA data stated in Table 1, with a maximum 

median R2 value of 0.21.  

However, trends are still observed, differing only based on 

PRCTneg limits. Figure 6 presents the same analysis in Figure 

4 for PSV data as an example. It can be seen when PRCTneg 

limit = 0.1-0.4, higher peak EAdi breaths tend to locate in 

PRCTneg ≥ limit group. While PRCTneg limit ≥ 0.7, higher peak 

EAdi breaths tend to locate in PRCTneg < limit group, 

conversely.  

For AUC[EAdi] analysis,  with constraint levels of 30% and 

40%, lower AUC[EAdi] (≤ ~2000μV*s) tends to locate in 

PRCTneg ≥ limit group while PRCTneg limit = 0.3-1.0. 

However, with constraint levels of 50% and 60%, same trends 

are observed with PRCTneg limit = 0.4, while opposite trends 

(lower AUC[EAdi] tends to locate in PRCTneg < limit group) 

are observed with PRCTneg limit = 0.9-1.0. 

In short, trends are observed for PRCTneg versus EAdi signal 

analysis for both NAVA and PSV data. The trend is consistent 

across PRCTneg limits in NAVA, while two trends are 

observed and being opposite for PRCTneg limit < 0.4 and 

PRCTneg limit ≥ 0.7 in PSV, which is thus more variable. This 

variability and the low correlation R2 values (𝑃̂𝑃𝑝𝑝 curve versus 

EAdi signal) match other studies showing PSV did not match 

tidal volume and EAdi well.

 
Figure 6. Peak EAdi values for tested breaths (440 breaths in total) grouped via PRCTneg limit (0.1, 0.2, …, 0.9, 1.0), while 𝑃̂𝑃𝑝𝑝 negative 

constraint level = 50%. Patient data under PSV mode are used.

4. DISCUSSION 

The negative area of 𝑃̂𝑃𝑝𝑝 has been considered as representation 

for patient negative spontaneous breathing work in original 

approach (Knopp, J.L., et al., 2021). Considering it is a patient-

specific and breath-specific variable, PRCTneg is analysed in 

Figures 4-6 and Table 1 for NAVA and PSV data.   

An appreciable correlation for NAVA data is observed for 

PRCTneg versus AUC[EAdi], where a 𝑃𝑃𝑝𝑝  negative constraint 

level of 70%, with a median R2 value of 0.58 and IQR = 0.36-

0.74 compared to R2 values in (Knopp, J.L., et al., 2021) with 

median 0.55 and IQR = 0.38-0.70. The 60% and 80% 

constraint levels also offers similar or better performance, as 

presented in Table 1.   

Then, Figure 4 as an example shows a trend that breaths have 

larger PRCTneg tend to yield lower peak EAdi values (≤ 

3000μV), when 𝑃𝑃𝑝𝑝  negative constraints = 30%-60%. 

Meanwhile, this trend is also found for PRCTneg versus 

AUC[EAdi] when constraint level is between 10%-60%. 

Therefore, for NAVA data, the 60% 𝑃̂𝑃𝑝𝑝  negative constraint 

level yielded the overall best compromise, with strong 

correlation between peak EAdi and 𝑃̂𝑃𝑝𝑝  values and 

physiologically-relevant meaning for 𝑃̂𝑃𝑝𝑝 curve negative area.  

Compared with NAVA ventilation, which allows proportional 

assist basing on measured EAdi signals, PSV simply delivers 

airway flow up to a targeted driving pressure (peak inspiratory 

pressure - PEEP). There is thus significant mismatch for many 

patients between inspiratory effort measured by EAdi and the 

tidal volume achieved (Chiew, Y., et al., 2013, Chiew, Y.S., et 

al., 2011, Moorhead, K., et al., 2013, Piquilloud, L., et al., 

2011). This mismatch is expected to yield a correspondingly 

lower correlation between inspiratory effort identified, or 

measured via EAdi, and outcome work of breathing or tidal 

volume. 

The correlations with PSV data all resulted in lower R2 values 

than NAVA outcome, with maximum median R2 value of 0.21 

to 0.58. However, trends observed between EAdi signals and 

PRCTneg for NAVA, Figures 4 and 5, can still be observed in 

PSV while being relatively more variable. The results match 

expectations from prior studies (Chiew, Y., et al., 2013, 

Chiew, Y.S., et al., 2011, Moorhead, K., et al., 2013), and as a 

result of observed poorer patient-ventilator interaction 

(Piquilloud, L., et al., 2011). The variability between patients 

is based on how well NAVA and PSV provided good patient-

ventilator matching and interaction (Chiew, Y., et al., 2013, 

Chiew, Y.S., et al., 2011, Moorhead, K., et al., 2013).  

Overall, physiologically-relevant correlations in 𝑃̂𝑃𝑝𝑝  curve 

negative area and EAdi signal can be found in both NAVA and 

PSV data analysis. A 𝑃̂𝑃𝑝𝑝 negative constraint level of 40-70% is 

required to ensure identifiability and physiological relevance 

in comparison to measured inspiratory effort in the studied 

trial. Results differ between NAVA and PSV modes based on 

the poorer patient-ventilator interaction observed in PSV, and 

these trends are patient-specific. Moreover, basing on previous 

studies for digital-twin model in lung mechanics identification 

and prediction in other mechanical ventilation (MV) modes 

(Sun, Q., et al., 2021, Sun, Q., et al., 2022, Zhou, C., et al., 

2021), this approach is promising in wider use in clinical. 

More clinical trials and data are required for further studies. 

5. CONCLUSION 

In conclusion, the proposed b-spline estimation method for 

inspiratory effort functions well for both NAVA and PSV data. 

Physiologically-relevant information is found within the 

identified 𝑃̂𝑃𝑝𝑝  curve for both NAVA and PSV modes, which 

could be used to help guide weaning or changes in MV mode 

settings. Further, its efficacy for the digital-twin model is 

promising for creating a more general overall model-based 

approach to personalised and predictive MV monitoring and 

care. In future, the identified 𝑃̂𝑃𝑝𝑝 could potentially be used to 

replace the need for costly measurement of EAdi signals in 

these clinically common MV patients. 

REFERENCES 

Akoumianaki, E., Maggiore, S.M., Valenza, F., Bellani, G., 

Jubran, A., Loring, S.H., Pelosi, P., Talmor, D., Grasso, 

S., Chiumello, D., Guérin, C., Patroniti, N., Ranieri, 

V.M., Gattinoni, L., Nava, S., Terragni, P.-P., Pesenti, 

A., Tobin, M., Mancebo, J. and Brochard, L. (2014). The 

Application of Esophageal Pressure Measurement in 

Patients with Respiratory Failure. American Journal of 

Respiratory and Critical Care Medicine, 189, 520-531. 

Albani, F., Pisani, L., Ciabatti, G., Fusina, F., Buizza, B., 

Granato, A., Lippolis, V., Aniballi, E., Murgolo, F., 

Rosano, A., Latronico, N., Antonelli, M., Grasso, S. and 

Natalini, G. (2021). Flow Index: a novel, non-invasive, 

continuous, quantitative method to evaluate patient 

inspiratory effort during pressure support ventilation. 

Critical Care, 25. 

Chiew, Y., Chase, J., Lambermont, B., Roeseler, J., Pretty, C., 

Bialais, E., Sottiaux, T. and Desaive, T. (2013). Effects 

of Neurally Adjusted Ventilatory Assist (NAVA) levels 

in non-invasive ventilated patients: titrating NAVA 

levels with electric diaphragmatic activity and tidal 

volume matching. BioMedical Engineering OnLine, 12, 

61. 

Chiew, Y.S., Piquilloud, L., Desaive, T., Lambermont, B., 

Roeseler, J., Revelly, J., Bialais, E., Tassaux, D., Jolliet, 

P. and Chase, J. (2011). Effect of various Neurally 

adjusted ventilatory assist (NAVA) gains on the 

relationship between diaphragmatic activity (Eadi max) 

and tidal volume. 24th Annual Congress of the European 

Society of Intensive Care Medicine (ESICM 2011). 

Berlin, Germany. 

Docherty, P.D., Chase, J.G., Lotz, T.F. and Desaive, T. (2011). 

A graphical method for practical and informative 

identifiability analyses of physiological models: a case 

study of insulin kinetics and sensitivity. Biomed Eng 

Online, 10, 39. 

Doorduin, J., van Hees, H.W.H., van der Hoeven, J.G. and 

Heunks, L.M.A. (2013). Monitoring of the Respiratory 

Muscles in the Critically Ill. American Journal of 

Respiratory and Critical Care Medicine, 187, 20-27. 

Jansen, D., Jonkman, A.H., Roesthuis, L., Gadgil, S., van der 

Hoeven, J.G., Scheffer, G.-J.J., Girbes, A., Doorduin, J., 

Sinderby, C.S. and Heunks, L.M.A. (2018). Estimation 

of the diaphragm neuromuscular efficiency index in 

mechanically ventilated critically ill patients. Critical 

Care, 22, 238. 

Jonkman, A.H., de Vries, H.J. and Heunks, L.M.A. (2020). 

Physiology of the Respiratory Drive in ICU Patients: 

Implications for Diagnosis and Treatment. Critical Care, 

24, 104. 

Knopp, J.L., Chase, J.G., Kim, K.T. and Shaw, G.M. (2021). 

Model-based estimation of negative inspiratory driving 

pressure in patients receiving invasive NAVA 

mechanical ventilation. Comput Methods Programs 

Biomed, 208, 106300. 

Moorhead, K., Piquilloud, L., Lambermont, B., Roeseler, J., 

Chiew, Y., Chase, J.G., Revelly, J.-P., Bialais, E., 

Tassaux, D., Laterre, P.-F., Jolliet, P., Sottiaux, T. and 

Desaive, T. (2013). NAVA enhances tidal volume and 

diaphragmatic electro-myographic activity matching: a 

Range90 analysis of supply and demand. Journal of 

Clinical Monitoring and Computing, 27, 61-70. 

Piquilloud, L., Vignaux, L., Bialais, E., Roeseler, J., Sottiaux, 

T., Laterre, P.-F., Jolliet, P. and Tassaux, D. (2011). 

Neurally adjusted ventilatory assist improves patient–
ventilator interaction. Intensive Care Medicine, 37, 263-

271. 

Sun, Q., Chase, J.G., Zhou, C., Tawhai, M.H., Knopp, J.L., 

Möller, K. and Shaw, G.M. (2021). Over-distension 

prediction via hysteresis loop analysis and patient-

specific basis functions in a virtual patient model. 

Computers in Biology and Medicine, 141, 105022. 

Sun, Q., Chase, J.G., Zhou, C., Tawhai, M.H., Knopp, J.L., 

Möller, K. and Shaw, G.M. (2022). Non-invasive over-

distension measurements: data driven vs model-based. 

Journal of Clinical Monitoring and Computing. 

Telias, I., Junhasavasdikul, D., Rittayamai, N., Piquilloud, L., 

Chen, L., Ferguson, N.D., Goligher, E.C. and Brochard, 

L. (2020). Airway Occlusion Pressure As an Estimate of 

Respiratory Drive and Inspiratory Effort during Assisted 

Ventilation. American Journal of Respiratory and 

Critical Care Medicine, 201, 1086-1098. 

Telias, I. and Savino, S. (2019). Techniques to monitor 

respiratory drive and inspiratory effort. Current Opinion 

in Critical Care, 26, 1. 

Vargas, M., Buonanno, P., Sica, A., Ball, L., Iacovazzo, C., 

Marra, A., Pelosi, P. and Servillo, G. (2022). Patient-

Ventilator Synchrony in Neurally-Adjusted Ventilatory 

Assist and Variable Pressure Support Ventilation. Respir 

Care, 67, 503-509. 

Zhou, C., Chase, J.G., Knopp, J., Sun, Q., Tawhai, M., Möller, 

K., Heines, S.J., Bergmans, D.C., Shaw, G.M. and 

Desaive, T. (2021). Virtual patients for mechanical 

ventilation in the intensive care unit. Computer Methods 

and Programs in Biomedicine, 199, 105912. 


