Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 56-2 (2023) 5615-5619

Influence of Reconstruction Algorithms on
Harmonic Analysis in Electrical Impedance
Tomography

Erik Stein* Rongqging Chen *** Alberto Battistel *
Andras Lovas *** Balazs Benyd6 **** Knut Modller *

* Institute of Technical Medicine (ITeM), Furtwangen University
(HFU), Villingen-Schwenningen, Germany (e-mail:
e.stein@hs-furtwangen.de).

** Faculty of Engineering, University of Freiburg, Freiburg, Germany
“** Department of Anaesthesiology and Intensive Therapy, Kiskunhalas
Semmelweis Hospital, Kiskunhalas, Hungary
% Budapest University of Technology and Economics, Faculty of
Electrical Engineering and Informatics, Department of Control
Engineering and Information Technology, Budapest, Hungary

Abstract: Electrical Impedance Tomography (EIT) is a commonly used imaging technique
for monitoring respiration on the bedside and it might have the potential for monitoring lung
perfusion. Several signal processing approaches have been developed to separate respiration and
perfusion. In this contribution we investigated whether different image reconstruction algorithms
influence the separation results provided by the harmonic analysis approach. We compared the
algorithms used by Drager, the Gauss-Newton method with different regularizers as well as the
GREIT algorithm. The comparison was carried out using a retrospective EIT dataset from a
COVID-19 patient. The results gave insight that the harmonic analysis separation approach
is dependent on the reconstruction algorithms. Both, the separation of the perfusion and the
separation of the respiration showed differences between the reconstruction algorithms when
carried out pixel-wise. On the other hand, the separations carried out on the global impedance
only showed marginal differences for the separated perfusion.
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1. INTRODUCTION

Electrical impedance tomography is a known and might
become an established imaging technique in the clinical
environment. It can be used for monitoring respiration on
the bedside especially of mechanically ventilated patients
in intensive care units (ICU) (Frerichs et al., 2017).

Due to its measurement principle, EIT has a high temporal
but low spatial resolution (Frerichs et al., 2017). Most
of the time, a belt with 16 electrodes is placed around
the chest of a patient (Frerichs et al., 2017; Adler and
Boyle, 2017). Then, two electrodes are used for injecting
an alternating current and the remaining electrode pairs
are used for measuring the resulting voltages (Frerichs
et al., 2017; Adler and Boyle, 2017). Subsequently, another
electrode pair is used for current injection. A full measure-
ment cycle therefore consists of 208 voltages. Because the
human thorax contains tissues of different and variable
conductivities, the measured voltages also differ at each
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electrode pair and other time (Frerichs et al., 2017; Adler
and Boyle, 2017).

In EIT these voltages are used to reconstruct the tissue
conductivities of the thorax. Unfortunately, EIT is an ill-
posed inverse problem because the measurement space
(voltage changes) is significantly smaller than the param-
eter space (conductivity changes). With certain assump-
tions solving this inverse problem can be described by the
following equation (Schullcke et al., 2016):

%= (J' T+ NR'R)"'J'y = By (1)

where X are the calculated conductivity changes and y the
measured voltage changes (Schullcke et al., 2016; Adler
and Boyle, 2017). The Jacobian matrix J relates the volt-
age changes to conductivity changes and the hyperparam-
eter \ weighs the regularization matrix R (Schullcke et al.,
2016; Adler and Boyle, 2017). B is the calculated recon-
struction matrix (Schullcke et al., 2016; Adler and Boyle,
2017). The equation uses conductivity and voltage changes
because difference imaging is applied. Difference imaging
describes the process of relating each measurement frame
to a reference frame (Adler and Boyle, 2017). Generally
speaking, difference imaging is more robust because the
influences of geometry variations, electrode movements,
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etc. on the reconstruction are smaller (Frerichs et al.,
2017).

Additionally to monitoring respiration, EIT might be ca-
pable of monitoring perfusion of the lungs and heart activ-
ity itself because some conductivity changes are assumed
to be related to them (Putensen et al., 2019). This could be
clinically relevant for monitoring the ventilation-perfusion
ratio (V/Q ratio) of the lungs. A mismatch between ven-
tilation and perfusion is indicated by a V/Q-ratio larger
or smaller than 1 (Silbernagl and Draguhn, 2018).

It is necessary to separate the respiration and perfusion
signals to assess the V/Q-ratio if only EIT is used. Al-
though several separation techniques have been published
in recent years, methods solely based on signal processing
(i. e. without contrast agents or similar) like filtering,
principle component analysis (PCA) or ECG-gating have
not reached clinical relevance yet (Putensen et al., 2019;
Frerichs et al., 2017; Battistel et al., 2021).

We recently proposed a different approach, which imple-
ments harmonic analysis for separation of respiration and
perfusion in EIT (Battistel et al., 2021). Simply speaking,
it fits the different harmonics of respiration and perfusion
with Hermite functions in the frequency domain and then
reconstructs them separately with Hermite polynomials
in the time domain. Advantageously, an overlap of res-
piratory harmonics into the frequency range of cardiac
activity will not influence the separation as long as the
basis frequency are no integer multiples or close to it.
With a simulation study it has already been shown that
harmonic analysis might be capable of delivering reliable
and precise separation results (Stein et al., 2022).

In this paper, we investigate whether different image
reconstruction algorithms and regularization techniques
change the separation results delivered by harmonic anal-
ysis. A comparison between the following algorithms is
made:

1) Algorithm used in the EIT Device PulmoVista ®) 500
manufactured by Dréager (Dréger)

2) Gauss-Newton with R = Rpapiace (GN Laplace)

3) Gauss-Newton with R = Rrighonov (GN Tikhonov)

4) Gauss-Newton with R = Ryosegr (GN NOSER)

5) Graz consensus reconstruction algorithm for EIT
(GREIT)

The separation is conducted on the global (sum of all
pixels over time) and the pixel-wise impedance values for
each algorithm. The dataset was collected on COVID-
19 patient, who was deeply sedated and supported with
pressure controlled mechanical ventilation. We decided
to use clinical instead of simulated data because clinical
data offers more complexity. Also a relative comparison
between the reconstruction algorithms is enough for the
investigation whether they deliver different separation
results.

2. HARMONIC ANALYSIS

The harmonic analysis approach separates respiration and
perfusion by firstly fitting their harmonics with Hermite
functions in the frequency domain (Battistel et al., 2021).
Hermite functions are recursively calculated as
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Secondly, the calculated coefficients from the fitting pro-
cess are used in the time domain for reconstructing the
separated signals with Hermite polynomials. Hermite poly-
nomials can be recursively calculated as

Ho(l‘) =1

Hy(z) =2z (3)

Hyt1(x) = 2zHy(z) — 2pHp—1(2)

Hermite functions have the important property of being
eigenvectors of the Fourier transformation, which means
they have the same shape in the frequency and the time
domain. Therefore, the coeflicients calculated in the fitting
process in the frequency domain can simply be used
for reconstruction in the time domain. To use Hermite
functions in the frequency domain a Gaussian window
function is employed. This is used to ”squeeze” the peak
intensity.

The harmonic analysis can then be described by the
following two equations, which represent the separated
respiration and perfusion:
Np Ny
Gr(t) =Y (09, cos(2mnfet)— @
p=0n=1

éh

i fop ST (2mnfrt))by(t)

Np Np
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p=0n=1
szmp sin (2mn fpt))by(t)

where 3, describes the reconstructed respiration and g,
the reconstructed perfusion signal. f, and f, respectively
describe the basis frequencies of respiration and perfusion
and 6 the calculated coefficients from the fitting process.
The basis functions b,(t) are shifted Hermite polynomials.
N, describes how many coefficients are used in the fitting
process and Nj, how many harmonics are actually fitted.

(5)

For more details please refer to the original paper (Battis-
tel et al., 2021).

3. RECONSTRUCTION ALGORITHMS
3.1 Drager

The Driger algorithm uses a linearized Newton-Raphson
method (a.k.a. Newton’s method) to reconstruct the con-
ductivity changes based on an FEM model (Zhao et al.,
2014). The exact algorithm is not known to the public
because the PulmoVista ® 500 is a commercial device
(Zhao et al., 2014).

3.2 GN Laplace
This algorithm uses the Gauss-Newton algorithm, which

is based on Newton’s method but solves a non-linear least
squares problem. For regularization a Laplace filter is used,
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Fig. 1. Global impedance based separation results: It shows the original and reconstructed global impedance (first row),
the separated respiration (second row) and the separated perfusion (third row)

which is a second order high pass filter and penalizes non-
smooth solutions (Schullcke et al., 2016).

3.3 GN Tikhonov

With Tikhonov the regularization matrix R is set to the
identity matrix I enforcing solutions with smaller norms
(Schullcke et al., 2016).

3.4 GN NOSER

NOSER is a regularizer used with the Gauss-Newton
algorithm. In this case the regularization matrix R is
calculated as the diagonal of J*J (Cheney et al., 1990;
Javaherian et al., 2013). As one can see, NOSER is the
extension of Tikhonov as it weighs the diagonal matrix
I with the FEM elements sensitivity represented by the
Jacobian J (Adler et al., 2009; Adler and Boyle, 2017).

3.5 GREIT

The GREIT algorithm introduces training data as prior
information to the image reconstruction process (Adler
et al., 2009; Adler and Boyle, 2017).

4. METHOD

The comparison is based on a retrospective clinical EIT
dataset of a COVID-19 patient, who was mechanically
ventilated and sedated (Lovas et al., 2022). The study
was approved by the Human Investigation Review Board
of the University of Szeged (approval number 67/2020-
SZTE) and the trial was registered under NCT04360837
(ClinicalTrials.gov). The measurements were conducted
at a frame rate of 50 Hz with the PulmoVista ® 500
manufactured by Dragerwerk AG & Co. KGaA. The raw
voltage data and the reconstructed images were both
provided by the device.

The image reconstructions based on the raw voltage data
were carried out in Matlab 2019a (Mathworks, Natick,
MA) with the EIDORS toolbox (Version 3.10) (Adler
and Lionheart, 2006) including Netgen. Netgen was used
for building the finite element method (FEM) models to
reconstruct on (Schoberl, 1997). The Dréger reconstruc-
tion was directly retrieved from the device. Matlab 2021a

(Mathworks, Natick, MA) was used for running the sep-
aration. Harmonic analysis was performed following our
previous work (Battistel et al., 2021).

The different hyperparameters A for each reconstruction
algorithm were chosen to result in a noise figure (NF) of
0.5 following the approach of Adler and Guardo (1996) and
are listed in table 1. The GREIT algorithm does not have
a hyperparameter but still adapts itself to the NF of 0.5
by changing the weight given to the training data (Adler
et al., 2009).

Table 1. Hyperparameters with NF = 0.5

Reconstruction algorithm  Hyperparameter
GN Laplace 0.0227
GN Tikhonov 0.0240
GN NOSER 0.0770

We applied the harmonic analysis on the global and the
pixel-wise impedance for each reconstruction algorithm.
Three respiration and four perfusion related harmonics
were fitted with two coefficients each. The Gaussian win-
dow was assigned a width of two.

5. RESULTS

In Fig. 1 the separation results of the global impedance are
presented based on the different reconstruction algorithms.
The global impedance curve in the first row was sufficiently
fitted in all five cases. The sum square mean (SSM)
of the fitting process is given in table 2. It is clearly
visible, that the intensity between all algorithms varies.
Still, the overall shapes of the reconstructed signals are
comparable. Also the separated respiration signal is similar
among the five algorithms but again differing in intensity.
Interestingly, the separated perfusion signals do not only
differ in intensity but also in shape. This is especially
visible in the lower intensity region of the curves.

Table 2. SSM of global impedance fitting

Reconstruction algorithm SSM
Drager 0.0043

GN Laplace 0.0015

GN Tikhonov 0.0024

GN NOSER 0.0006
GREIT 0.0042
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Fig. 2. Pixel-wise separation results of respiration (left
column) and perfusion (right column) depicted as
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Fig. 3. Pixel-wise separation results of respiration (left
column) and perfusion (right column) depicted as
maximum images (GN algorithms, cropped)

In Fig. 2 the pixel-wise separation results of respiration
and perfusion are depicted as maximum images (maxi-
mum value of each pixel). Here the differences between
the reconstruction algorithms are obvious. Overall, the
separation results of Drager and GREIT are smoother and
less noisy than the results of GN Laplace, GN Noser, and
GN Tikhonov. Additionally, the signal intensity of Drager
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and GREIT is concentrated in the expected regions of the
heart and lungs and not at the boarders of the FEM model.

The separated respiration of the Dréger reconstruction in
Fig. 2 shows the highest activity in the right lung (left
side of the image) and some lower activity in the left lung.
GN Laplace and GN NOSER show similar results. For
GN Tikhonov the activity in the lungs is almost invisible
due to strong boundary artifacts. The GREIT separation
results emphasize the right lung but are squeezed in
the y-dimension. All separated respiration images show
some additional activity around the lungs. However, these
additional activities are most prominent in GN Laplace,
GN NOSER and GN Tikhonov.

The separated perfusion images in Fig. 2 show similar
shapes for all reconstruction algorithms with one smaller
round shape and one larger banana-shaped area being
present. The smaller round shape likely represents the
hearts activity while the banana-shaped area might re-
late to the perfusion of the lungs. Overall, Driger and
GN Laplace show the highest similarity, followed by GN
NOSER and GREIT. However, the center of highest activ-
ity of GN NOSER is shifted towards the top, while GREIT
shows a very smooth and squeezed separation result. GN
Tikhonov shows the highest activity at the borders of the
FEM model, where one would expect the electrodes and
only light activity in the lung and heart area. Still, the
shapes present in GN Tikhonov are similar to the others as
shown with Fig. 3. In Fig. 3 we cropped out the boundary
artifacts and then recalculated the color scale for the GN
algorithms.

6. DISCUSSION

As shown with the results, different image reconstruc-
tion methods deliver different separation results when
harmonic analysis is applied especially in the pixel-wise
separation. The differences among the reconstruction algo-
rithms in the separation of the global impedance however
were only visible marginally. In the pixel-wise separation
GN Tikhonov pushed the noise to the boundaries of the
FEM model, which is a disadvantage of the algorithm
mentioned in the literature (Adler et al., 2009; Adler and
Boyle, 2017). NOSER, which is an extension of Tikhonov,
delivered a more reliable reconstruction and also clearer
separation results (Adler et al., 2009; Adler and Boyle,
2017). The Dréger and GREIT reconstruction algorithms
commonly produce rather smooth images (Adler et al.,
2009), which is also visible in the separation results (see
Fig. 2).

Nevertheless, this investigation has limitations: First, the
FEM models of Dréger and GREIT do not match the FEM
models used for the GN based algorithms. Drégers FEM
model is not publicly available and we were not able to
implement the GN based algorithms with the FEM model
used by GREIT. This also explains why the separation
results based on GREIT are squeezed as GREITs FEM
model is smaller in the y-dimension. Second, we applied
the NF-approach for calculating the hyperparameter A.
However, the Drager device does not use this approach
and, therefore, comparability between the Dréager algo-
rithm and the others is limited in this case. Third, we
are aware that other reconstruction algorithms and regu-
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larization techniques like the D-bar method exist but were
not included in this paper. Last, we cannot compare the
separations quantitatively because no additional perfusion
or ventilation data is available.

7. OUTLOOK

We conclude that the harmonic analysis approach is de-
pendent on the image reconstruction algorithm applied
beforehand. The differences were small but still observ-
able and, therefore, we recommend the development of
a method where the harmonic analysis approach can be
applied before image reconstruction. More precisely, we
suggest applying this novel separation technique on the
raw voltage data and then, afterwards, carry out image
reconstruction for respiration and perfusion independently.
This could also open the door for new research areas inves-
tigating whether respiration and perfusion might actually
benefit from different image reconstruction algorithms.
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