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Abstract—Instrumented mouthguards have been used to
detect head accelerations and record kinematic data in
numerous sports. Each recording requires validation through
time-consuming video verification. Classification algorithms
have been posed to automatically categorise head accelera-
tion events and spurious events. However, classification
algorithms must be designed and/or validated for each
combination of sport, sex and mouthguard system. This
study provides the first algorithm to classify head accelera-
tion data from exclusively female rugby union players.
Mouthguards instrumented with kinematic sensors were
given to 25 participants for six competitive rugby union
matches in an inter-university league. Across all instru-
mented players, 214 impacts were recorded from 460 match-
minutes. Matches were video recorded to enable retrospec-
tive labelling of genuine and spurious events. Four machine
learning algorithms were trained on five matches to predict
these labels, then tested on the sixth match. Of the four
classifiers, the support vector machine achieved the best
results, with area under the receiver operator curve (AUR-
OC) and area under the precision recall curve (AUPRC)
scores of 0.92 and 0.85 respectively, on the test data. These
findings represent an important development for head impact
telemetry in female sport, contributing to the safer partici-
pation and improving the reliability of head impact data
collection within female contact sport.

Keywords—Machine learning, Head impact telemetry, Wear-

able sensors, Concussion, mTBI.

INTRODUCTION

Both concussive and sub-concussive head accelera-
tions have been linked with acute and chronic neu-
rocognitive changes.23 Due to the frequency of these
head accelerations, sporting governing bodies have
introduced law changes to reduce the number and
severity of these events occurring in competition and
training.10,28,33 For example, the international gov-
erning body, World Rugby, has implemented law
changes to improve the safety of the tackle and to more
harshly sanction those who fail to abide by the law.28

Given the complexity of concussion diagnosis and the
subtlety of sub-concussive injuries, objective tech-
nologies can help to quantify the occurrence of
potentially dangerous events.19

Head impact telemetry devices, a type of wearable
kinematic sensors, have been implemented to provide
objective measures of the frequency and severity of
head acceleration events.24 These measurements can
provide insights into the performance of interventions
and help further our understanding of brain injury
biomechanics to inform future interventions.4,25 De-
vices such headbands, patches, helmets, and Instru-
mented mouthguards have become commercially
available for use in sports such as American football,
football, and Australian rules football.1,7,27,36

Despite the burgeoning market for these devices, two
significant issues persist with the utility of head impact
telemetry devices for categorising head impacts. The
first issue is the miss-estimation of head accelerations
kinematics, and the second is the prevalence of false
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positive recordings.15,17,27 These issues negatively influ-
ence the devices capability to measure impact frequency
and magnitude precisely and reliably; the two primary
research interests.17,26 To mitigate this, video verifica-
tion of impacts and machine learning algorithms have
been proposed as methods to remove spurious events
from datasets, although both have drawbacks.27

Video verification is a time-consuming activity with
the quality of the output being dependant on the skill of
the reviewers and the quality of the footage used.8,27

Furthermore, machine learning algorithms are reliant on
high quality datasets, which in turn relies on both video
verification and the quality data recorded by the head
impact telemetry device. Additionally, questions remain
over the on-field performance of algorithms trained on
laboratory data.17,27 Despite this, it has been reported
that only 36% of head impact studies use video verifica-
tion, whilst 74% used filtering algorithms.26 Multiple
studies have proposed machine learning algorithms to
improve the on-field performance of instrumented
mouthguards in specific sports, achieving near human-
levels performance.11,12,39,40 This illustrates that for ma-
chine learning algorithms to become a viable injury
detection method, it is imperative that they are derived
from data collected from appropriate populations.

One area where the population differences may be
particularly prevalent are between males and females,
due to the differences in cervical spine and the kinematic
response of the head during impact.6,22,32,36 The struc-
ture of the male cervical spine results in greater stability
and resistance to external loading than the female cer-
vical spine.22 This results in females experiencing an
increased magnitude of displacement and acceleration
during vehicle collisions and sporting contact
events.6,32,36 As the motion of the head is reported to be
different during different during these events, it is rea-
sonable to assume that the trends developed bymachine
learning algorithms may be sex specific.

Despite the rapid growth of female rugby union
participation and the increasing number of profes-
sional players, no algorithms for female sport or rugby
union have been specifically developed.37,38 Therefore,
it is imperative that this gap is addressed to ensure
player safety and research quality.36 This study aims to
develop a classification algorithm to detect head
accelerations from instrumented mouthguards, in fe-
male rugby union players.

MATERIALS AND METHODS

Data Collection

A rugby union head impact dataset was collected
during the 2021/22 British Universities and Colleges

Sports rugby season. The study was conducted within
the framework outlined in the Consensus Head
Acceleration Measurement Practices (CHAMP) 2022
project to ensure best practice.3,29 Instrumented
mouthguards were issued to 25 players participating in
six matches in the women’s premier south rugby divi-
sion. All sensors remained functional during the six
competitive matches, with data recorded from players
representing all positions. Time-stamped videos were
recorded from the centre line of the pitch with a 1080p,
30 fps device to enable the identification of events.
Recordings were verified by two experienced reviewers,
using a two-stage verification method. The times
players were on-field were recorded, so that all off-field
events could be excluded from the dataset. Two high
certainty head acceleration events were found via video
review and used to calibrate timing across the video
and instrumented mouthguard data. A list of all events
with corrected times was then compared to the video
footage to verify the head acceleration events. For each
event, if the player wearing the device that recorded the
event was seen to be involved in a contact event, with a
clear head acceleration within a ± 3 s window of the
recorded time, the acceleration profiles would then be
visually inspected for coherence. Visual inspection
consisted of assessing the acceleration to determine
whether it was representative of the on-video head
acceleration, using criteria outlined within Williams
et al.36 Events passing the verification process were
labelled as positive events, whilst any on camera events
that failed to pass were labelled as negative events.
Institutional ethics approval was obtained prior to the
commencement of the study, with subjects giving in-
formed consent to their inclusion in the study (ethical
approval number FP_01-10-21). All participants pro-
vided written informed consent prior to the start of the
study, consistent with the approval granted by the
Swansea University College of Engineering Research
Ethics and Governance Committee.

Data were collected using the previously validated
boil-and-bite instrumented mouthguards (Prevent
Biometrics, Edina, MN, USA).5,13,17,20 All instru-
mented mouthguards contained a 3.2 kHz three-axis
angular rate sensor, three 3.2 kHz single-axis linear
accelerometers, a 130 mAh battery, proximity sensor,
internal storage of up to 460 events and BLE trans-
mission. The angular and linear sensors had measure-
ment ranges between ± 35 rad s21 and ± 200 g,
respectively. When a head acceleration was detected, a
segment of data from 10 ms prior, to + 40 ms post
impact is stored temporarily on the instrumented
mouthguard and transmitted via an iOS tablet on the
side-line and uploaded to the Prevent Biometrics cloud
server. Full descriptions of the technical specifications
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of the instrumented mouthguards have been reported
in Ref. 5, 13, 17, 20.

The data transmitted to the Prevent cloud server is
then fed to an algorithm to determine the cut-off fre-
quency used to filter the recording. This is dependent on
the strength of the noise recorded, which can be set to
either 200, 100 or 50 Hz.35 As varying cut-off frequency
filters would affect features used to train the classifica-
tion algorithms, raw data was filtered in-house with a
200 Hz cut off frequency. The raw data included rota-
tional velocity and linear acceleration and a proximity
sensor reading. The proximity sensor data was used to
provide a measure of the devices coupling with the
teeth. Impacts that recorded low peak proximity values
or large changes to the proximity reading were excluded
from the study. Data containing low or inconsistent
proximity values may have occurred off teeth or the
device may have been subject to artefact during
recording. Kinematic data was then filtered using a
200 Hz, 4th order Butterworth low-pass filter. Rota-
tional acceleration was then estimated numerically from
the rotational velocity, using four the neighbours of a
central point to estimate the derivative, known as the
five-point stencil derivative method.31 The absolute
acceleration of each instance impact data was estimated
via the Euclidean norm. Only events with a peak linear
acceleration magnitude � 9 g were used.

Classifiers

Four classification algorithms were trained to
determine whether the filtered accelerations were im-
pact events or false impact events. Due to the large
number of classification algorithms available, the
classifiers selected for this task had previously shown
success in head acceleration classification tasks. These
algorithms were an adaptively boosted decision tree,
support vector machine, and two extreme gradient
boosted decision tree models, CatBoost and XGBoost,
as used in Wu et al., Gabler et al., and Goodin
et al.11,12,39

The classifier determined key patterns in the
descriptive features of the filtered six-axis kinematic
data. Features were grouped into four categories, pulse
parameters, positional derivatives, power spectral
density, and wavelet transformations. Except for
positional derivatives, the feature categories have been
used previously to train head acceleration event clas-
sifiers.11,12,39 Analysis was undertaken in a Python
3.8.10 computational framework.

Pulse Parameters

The prominence, width, and number of pulses were
identified from local maxima in the signal. The

prominence of each peak was measured by calculating
the vertical distance between the highest point and the
lowest contour line. The width of each peak was
measured by calculating the horizontal distance at the
lowest contour line. In the event of there being multiple
instances of either measure, the maximum value cal-
culated would be used. The final measure was the total
number of peaks per signal.

Positional Derivatives

The first and second derivatives were calculated
from each of the kinematic measurements. The first
derivative was calculated from the change in two
sequential recorded values, with the second derivative
calculated by the same process from the first derivative.
The maximum absolute value of each signal used, this
provided the maximum rotational acceleration and
jerk as calculated from the rotational velocity, and the
respective jerk and snap as calculated from the linear
and rotational accelerations.

Power Spectral Density

The power spectral density describes the power of a
signal in frequency components. This was calculated in
20 Hz windows using Welch’s method between 20 and
200 Hz,with theupper bounddetermineddue to thefilter’s
cut-off frequency. The power values for each frequency
were used as a feature, providing ten features per vector.

Wavelet Transformation

A wavelet transformation was used to provide time
dependant frequency analysis. A continuous wavelet
transformation was conducted for each signal using
the Ricker wavelet function between 10 and 200 Hz, in
10 Hz increments. The strength of frequencies calcu-
lated at the recording’s maxima were used as features.

The features were appended to a data frame, in which
they were scaled to have zero mean and a standard
deviation of one. To reduce overfitting and training
times, the total number of features were reduced to 100
using the FCQ variant of the maximum relevance min-
imum redundancy method.41 There are no standardised
rules on the appropriate number of features that should
be considered. In this study, a value closer to the lower
limit of features outlined Hua et al. 2005 was selected.14

This was to combat the prevalence of collinearity
between the features of the dataset.14

Performance Metrics

The area under the receiver operator curve (AUROC)
and area under the precision recall curve (AUPRC) were
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used as the performance measures of the models. Area-
based metrics measure the classifiers’ ability to discrimi-
nate between events at all decision thresholds, which in
turn gives a measure of how well the classifier has sepa-
rated the data.21 This provides greater detail of the
classifier’s performance than measures that require a
specific prediction threshold. To generate the curves, the
true positive rate (recall), the precision and false positive
rate were calculated at all decision thresholds. The true
positive rate measures the classifier’s ability to correctly
predict labels within the positive class (Eq. 1). Precision
measures the quantity of true positive events from all
predicted positive events (Eq. 2). Lastly, false positive
rate is the measures the classifier’s ability to correctly
label events from the negative class (Eq. 3).

AUROC uses true positive rate and false positive rate,
which are calculated across decision threshold values
between zero and one. These values are then plotted, with
the resultant area under the curve is calculated. A score of
1.0 indicates the model will predict a correct label with
100%certainty every time, whereas 0.5 represents random
performance. AUPRC similarly calculates the area under
a curve, however, the plot displays the true positive rate
(recall) against precision. It has previously been identified
as an important metric in head impact telemetry due to its
value when evaluating imbalanced datasets.30,39,40 The
area under the curve is equal to the average of the precision
of the classifier across all decision thresholds. Should a
model achieve perfect classification results, then an area
under the curve score of 1.0 would be returned. Con-
versely, a classifier with no classification skill would return
a score equal to the fraction of positive events within the
dataset.

Recall; TruePositive Rate ¼ TP

TPþ FN
ð1Þ

Precision ¼ TP

TPþ FP
ð2Þ

False Positive Rate ¼ FP

FPþ TN
ð3Þ

Shapley additive explanation (SHAP) values were
calculated to analyse the effect of feature values on the
classifier’s outputs.18 SHAP values are calculated from
the prediction of labels on feature vectors constructed
from feature values and combinations found within the
dataset. The effect of the feature value can then be
measured along with its effect on label prediction.

Classifier Selection and Development

The rugby union data was roughly split into a
training group using five of the six matches (~ 80%),

and data from one game was used as the testing group.
No data from the same session appeared in both the
training and test groups.

The first training stage was the simultaneous hyper-
parameter and feature selection, conducted using an
eightfold cross-validation. During cross-validation, the
training data was split into eight approximately equal
groups, with all but one of the groups used to train the
classifier and the remaining groups used to assess the
classifier’s performance. The cross-validation process
works so that all data appears in the validation group
once. A dictionary of hyper-parameters was created,
and an exhaustive search of all combinations was used
to find the highest performing classifier hyper-param-
eters, with models optimised for AUROC. This was
initially tested with ten features then re-run with ten
features added, until the feature set had reached the
maximum size of 100 features. Feature optimisation
was conducted in this manner to reduce the likelihood
of overtraining the classifiers, whilst optimising the
features and hyper-parameters. The hyper-parameters
of the highest performing models were then recorded.
These configurations were then retrained on the entire
training dataset ten times, with the highest performing
model then used to predict labels on the test data.
AUROC, AUPRC and SHAP values were then cal-
culated to assess and explain model performance. The
code and trained classifiers may be made available
following a reasonable request to the corresponding
author.

RESULTS

A total of 214 head acceleration events and 466
spurious events were identified from the raw data
during the video verification process. The training data
was formed of five matches, containing 166 head
accelerations events and 400 spurious events, with the
remainders used for the test data.

The 100 features selected using the maximum rele-
vance minimum redundancy method included features
from each category and kinematic measurement, over
a wide range of frequencies. This consisted of 20 pulse
parameters predominantly measuring the rotational
acceleration and velocity, nine higher frequency power
spectral density measures of linear acceleration, and
eight derivatives of rotational acceleration and veloc-
ity. The remaining features consist of wavelet trans-
formation from all kinematic measurements across the
whole spectrum of frequencies used. A summary of the
most informative 25 features obtained is shown in
Table 1.

The best performing 20 features for the CatBoost
and SVM classifiers as identified by SHAP values were
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found. The most important features for classification
were predominantly pulse parameters and wavelet
transformations at very low or high frequencies. For
the CatBoost classifier, wavelet transformations made
up over half of the 20 features used. The transforma-
tions in the X direction at 20 Hz and Y direction at
200 Hz for the linear classifier were the most important
features. These important features and their relative
contributions to classification of head impacts are
provided in Fig. 1. SHAP values were also calculated
for the SVM classifier, with the top 20 features pri-
marily consisted of pulse parameters, with the
remainder of features being wavelet transformations,
the results are shown in Fig. 1.

During the optimisation process, the CatBoost
classifier achieved the highest cross-validation AUR-
OC score of 0.900, with the next highest performing
classifiers being XGBoost, SVM and Adaboost deci-
sion tree respectively. When tested upon the test da-
taset, the SVM classifier achieved the highest AUROC
and AUPRC, followed by the CatBoost, XGBoost and
Adaboost DT. The results of all the tests are shown in
Table 2, with all receiver operator curves and precision
recall curves plotted in Fig. 2.

DISCUSSION

In this study the performance of four classification
algorithms trained on head impact telemetry data from
women’s collegiate rugby union were evaluated. This
work developed a classification algorithm to detect
head accelerations recorded by instrumented mouth-
guards, in female rugby union players. In total, four
head acceleration classification models were developed.
This is the first study to both develop classifiers with
exclusively female data, and to classify impacts from
rugby union. Each model performed well in the clas-
sification task, with a support vector machine algo-
rithm providing the greatest performance when tested,
with an AUROC and AUPRC of 0.92 and 0.85
respectively. This study represents an important step in
the development of female specific head acceleration

detection algorithms, which will contribute to safer
participation in rugby union and more reliable study of
female contact sport.

SHAP and mRMR feature analysis identified pulse
parameters and wavelet transformations as the most
valuable feature categories, providing both the greatest
number, and most powerful features for classification
(Fig. 1, Table 1). The frequencies used to train the
classifiers ranged from 10 to 200 Hz, with features
closer to the 10 and 200 Hz limits typically appearing
earlier in the order of selection. Both high and low
frequencies contributed to predictions of the negative
classes (Table 1). High feature values of wavelet
transformations that had characteristic frequencies at
the feature limits generally led to negative class label
prediction. Conversely, features that led to positive
prediction were limited to those based on low fre-
quencies and some pulse parameters. For example,
10 Hz motion in the vertical direction (z) was predic-
tive of actual events, as was pulse width in all direc-
tions (Fig. 1).

This analysis highlighted the importance of the
feature’s direction and the characteristic frequency. A
feature with characteristic frequency of 20 Hz in the y-
direction, for example, was strongly negative in its
contribution to prediction of actual impacts, whereas a
feature with characteristic frequency of 10 Hz in the z
direction was strongly positive in its prediction of ac-
tual impact (Fig. 1). This may occur as the low fre-
quency features may be capturing voluntary human
motion, which generally occurs at frequencies below
10 Hz.16 For example, spurious events can occur while
players are at rest and motion largely restricted to the x
and y axis. As a player runs or enters contact, there will
be a greater movement in the z direction, which is
registered more often in positive events, hence leading
to a positive label prediction.

This study used a novel data set collected from 25
iMGs from adult female rugby players in a university,
1st team squad. This data was collected in accordance
with the methodology outlined by Williams et al..36

The last six games of the season were monitored, with
the number of players in the match day squad pos-

TABLE 1. Highest performing features and their orientation on the head impact classifier models.

Feature category Recording

Direction and frequency

X Y Z R

Wavelet transformations Linear acceleration 200, 160 20, 30 10, 50, 30, 40

Rotational velocity 100, 50, 60, 80 160 100, 80

Rotational acceleration 30

Positional derivatives Rotational velocity PP, PN, PW PW PN, PW PW, PN

Rotational acceleration PP PW
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FIGURE 2. Left, classifier precision recall curves. Right, classifier receiver operator curves.

TABLE 2. Classification performance of various models in cross-validation and validation within the test dataset.

Model Cross-validation optimisation Score (AUROC) Test score AUROC Test score AUPRC

SVM (70 features) 0.885 0.92 0.85

Adaboost DT (100 features) 0.866 0.89 0.81

XGBoost (20 features) 0.892 0.89 0.82

CatBoost (90 features) 0.900 0.91 0.82

FIGURE 1. The 20 most valuable features identified through SHAP for classification. (Left = CatBoost classifier, Right = Support
vector machine).
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sessing iMGs ranging from 12 to 22 per game. In total,
over 7500 player minutes of data was gathered, with
every field position represented. Hence, the data is
broadly representative of female rugby at the penulti-
mate level. Each game was verified independently by
two reviewers, who while blinded to each-other’s
classifications, achieved a high level of agreement. In
total 680 impacts were used within the training and
testing of the classification algorithms, which is in line
with the datasets used in the studies of Wu et al. and
Gabler et al. 11,39 The Prevent boil-and-bite instru-
mented mouthguards performed comparably to the
on-field performance tests reported in Kieffer et al. 17

The algorithms saw consistent performance across the
training and test datasets reaching values proximal
with those in the literature, indicating a reliable study.

The classification results shown in Table 2 are, by
some metrics, slightly lower than some studies of
American football and Australian rules football head
accelerations.9,11,12,39 Specifically, Goodin et al.
recorded maximum recall of 94.7 and 95.7% for gen-
uine and spurious events in Australian rules football.12

Whilst the American football classifiers of, Wu et al.,
Gabler et al., and Domel et al. achieved precisions of
98.3, 93.8 and 86.0, with recall values of 87.2, 100 and
76% respectively.9,11,39 For comparison, In this study a
peak precision of 89.9% and recall of 91.1% were
achieved with the SVM classifier. Note that the com-
parisons across sports lack equipoise to make sum-
mative assessments of the algorithms considered. In
particular, classification of head accelerations in rugby
union requires capture of a variety of head acceleration
types. Hence, such models need to be broad, with
many features to capture the various head acceleration
types. This model broadness provides more potential
for spurious data to correlate with one of the features,
and lead to a false positive. It is reasonable to assume
that sports with a limited range of head acceleration
types can classify events with fewer features and limit
the potential for false correlation. The complexity of
head accelerations in rugby union may also manifest as
classification errors during the video verification pro-
cess, as matches were typically filmed without redun-
dancy and from the side-line. While some events were
excluded due to being unclear in the match footage,
some events may have been misconstrued as the
incorrect label by the video verifiers. Additionally,
some phases of play such as tackling, rucking, and
mauling occur can lead to multiple recordings during
the event, which in turn makes classification difficult.
In these events, the recording where no clear move-
ment of the head could be seen on camera were ex-
cluded from the study. This resulted in a dataset
containing only events recorded when clear head
acceleration was seen, and events with no head accel-

eration. Some previous studies have included only di-
rect head contacts, so perhaps the inclusion of indirect
events led to the inclusion of more spurious events or a
more difficult classification task.11,39 A further limita-
tion to this study, is the lack of availability of testing
data acquired from a separate cohort. Whilst the re-
sults were consistent across the cross validation and
testing, further validation from new end users would
assist in assuring the generalisability of the developed
algorithms to female rugby union cohorts. Further-
more, care should be taken when extrapolating the
results of this analysis beyond the cohort tested. In
particular, these results may not be applicable in
adolescent female rugby, in the professional levels, or
in other women’s sports. With the classifiers previously
validated in other sports, it appears that decision tree-
based ensemble and support vector machine algo-
rithms are both capable of creating high performing
classifiers.11,12,20 The maximum relevance minimum
redundancy method was used to reduce the feature
count from 540 to 100 to aid classifier training. This
proved successful as the features identified as most
important through mRMR were later confirmed as
highly valuable by the SHAPley additive explanations
(Fig. 1). Figure 2 shows the SHAP values of the most
valuable feature in the Catboost classifier (Wavelet
Transform, Y, Lin Acc, 20 Hz) was far more powerful
than the 20th most predictive feature. Hence, the
pruning approach that was utilized to mitigate over-
fitting, was unlikely to lose significant amounts valu-
able information. This retention of performance is
shown in Fig. 2. Whilst this unbalanced contribution
of feature strength wasn’t as pronounced in the sup-
port vector machine approach, there was still a
reduction in feature power across the top 20. Overall,
the distinct SHAP values for each feature across the
four algorithms tested highlights the importance of
providing the algorithms with diverse array of features
for head impact classification tasks.

This study has illustrated that it is possible to create
high performing head acceleration event classifiers for
female rugby union. This will aid future researchers to
more quickly and accurately identity head acceleration
events within female rugby union. It has been previ-
ously reported that there are sex differences between
the male and female cervical spine and sex differences
in measured head peak-kinematics during rugby union
matches.2,22,34,36 Further to this, there has been no
cross-validation study of head acceleration classifica-
tion algorithms across sports or sexes. Such cross-
validation is required to establish the repeatability and
generalisability of model-based interpretation of
instrumented mouthguard data for head acceleration
monitoring. Until this is done, it is reasonable to as-
sume that there may also be differences in impact
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characteristics and that a ‘‘one size fits all’’ approach
to classification is not appropriate. As head accelera-
tion classification algorithms learn specific patterns
and trends, the patterns learnt from male sport, may
not provide replicable results in female sport. Failing
to address this may lead to significant differences in the
understanding and identification of brain injury in fe-
male sport. With the rapid growth and progressive
professionalisation of female rugby union, it is essen-
tial to create specific state-of-the-art head acceleration
classification models to provide reliable data, and to
protect players.37,38
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