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Abstract: Minimal invasive surgery, more specifically laparoscopic surgery, is an active topic in
the field of research. The collaboration between surgeons and new technologies aims to improve
operation procedures as well as to ensure the safety of patients. An integral part of operating rooms
modernization is the real-time communication between the surgeon and the data gathered using the
numerous devices during surgery. A fundamental tool that can aid surgeons during laparoscopic
surgery is the recognition of the different phases during an operation. Current research has shown
a correlation between the surgical tools utilized and the present phase of surgery. To this end, a
robust surgical tool classifier is desired for optimal performance. In this paper, a deep learning
framework embedded with a custom attention module, the P-CSEM, has been proposed to refine the
spatial features for surgical tool classification in laparoscopic surgery videos. This approach utilizes
convolutional neural networks (CNNs) integrated with P-CSEM attention modules at different levels
of the architecture for improved feature refinement. The model was trained and tested on the popular,
publicly available Cholec80 database. Results showed that the attention integrated model achieved
a mean average precision of 93.14%, and visualizations revealed the ability of the model to adhere
more towards features of tool relevance. The proposed approach displays the benefits of integrating
attention modules into surgical tool classification models for a more robust and precise detection.

Keywords: attention module; laparoscopic video analysis; surgical tool classification

1. Introduction

Over the years, advancements in technology have led to improved surgical proce-
dures and, overall, to a better quality of patient care [1,2]. The introduction of these new
technologies has, on the one hand, improved surgical efficiency as well as patient safety in
operating rooms (ORs). Consequently, on the other hand, this has led to the ORs increased
complexity [2,3]. This situation has paved the way for extensive research topics that try
to harness the benefits of artificial intelligence (AI) to aid surgeons during operations [3].
Future ORs look to adopt the Industry 4.0 outlook, which utilizes smart systems i.e., AI
solutions, and focus on providing real-time communication between surgeons and the
multiple devices adopted during an operation for a smoother and more efficient workflow.
A robust model that analyzes and interprets data collected from different sources is essential
in providing an appropriate feedback for interventions, also referred to as computer-aided
intervention (CAI).

CAI systems have the potential of improving surgical quality by providing a real-time
feedback to the surgeons during an operation [2]. Surgical phase recognition is one of
the applications that can help assist medical staff through skills assessment and protocol
extraction, as well as to improve the management of ORs, e.g., preparing the next patient
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for surgery when observing the final phase of the current operation. Recognizing the
different phases can be challenging; however, a correlation between surgical tool usage
and phases has been observed [4]. Therefore, a robust surgical tool recognition model is
necessary to provide a precise and accurate detection of the tools from the data captured
using a laparoscopic camera. However, surgical tool classification models are not limited to
simply phase recognition, but can also be utilized for different applications, i.e., camera
zoom control [5].

Image-based data analysis is one of the most challenging topics in the field of machine
learning. Current computer vision applications have adopted deep learning techniques,
more specifically convolutional neural networks (CNNs), as research has shown they out-
perform traditional machine learning methods for object classification. In video-based
image classification tasks, further improvements to the classification models have been in-
troduced by considering temporal information from image sequences by means of recurrent
neural networks (RNNs). In recent years, the concept of attention modules has also shown
an increased presence in the literature due to their ability to improve model performance
by refining spatial features with slight influence on computational complexity [6]. These
attention modules can be integrated into any existing network architecture in order to
improve the network representation and region of focus by concentrating on informative
features and diminishing less important ones [6,7].

In this paper, an attention module, termed P-CSEM, was developed and evaluated
to improve feature refinement and classification performance. First, the residual network
architecture of ResNet50 [8] was selected as the base framework with initial weights trained
on the ImageNet [9] database. ResNet50 was chosen following the results generated by
the authors of [10], where a balance between the training time and performance was
observed. Second, P-CSEM modules were added to the base ResNet-50. The proposed
P-CSEM attention module was then evaluated against the attention modules of squeeze
and excitation (SE) [6] and convolutional block attention module (CBAM) [7]. All models
were trained and tested on the popular, publicly available Cholec80 database [4].

The paper is structured as follows: In Section 2, the methods used, attention module,
network architecture, and analysis criteria are described. Section 3 highlights the key results
while the discussions are rendered in Section 4. In Section 5, an ablation study conducted
on the proposed model is reported, and a conclusion is drawn in Section 6.

Related Work

The challenges of classifying surgical tools in real time have yielded different strategies,
methods, and techniques, with more studies leaning towards deep learning approaches in
recent times. In the study published by the authors of [4], surgical tool classification was
tackled in a multi-task manner in combination with surgical phase recognition. Their study
revealed an 81.0% mean average precision (mAP) on the Cholec80 dataset. To reduce the
impact of the imbalanced distribution of surgical tools on training CNN models, a very
deep CNN architecture model was implemented in the study published by the authors
of [11], with data augmentation techniques achieving a mAP of 93.75%. In the study
published by the authors of [12], a weakly supervised CNN pipeline was proposed with a
novel tool localization maps approach. The proposed model achieved a mAP of 87.4%. A
weakly supervised deep learning approach was proposed by the authors of [13] to perform
surgical tool classification and localization by adding a multi-map localization layer and
incorporating features at multiple stages within the architecture, which achieved a mAP
of 90.6%.

In recent studies, modeling temporal information, along with surgical video sequences,
showed great improvements over spatial approaches [14]. For instance, a spatial temporal
network for surgical tool detection studied by the authors of [14] achieved state-of-the-art
performance results, reaching a 94.74% mAP on the Cholec80 dataset.

In the study published by the authors of [5], a novel zoom control system was in-
troduced. This system uses laparoscopic tool segmentation to extract tool geometry and
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perform automatic camera zoom adjustments based on the detection and position of specific
tools for a better visual during surgery. In the study published by the authors of [15], a
novel CNN architecture that generates ghost feature maps for a more efficient tool local-
ization model by tackling the issue of redundant feature maps was studied. Performance
results on the Cholec80 showed a 91.6% mAP and achieved an inference recognition speed
of 38.5 frames per second (FPS).

Attention blocks have the ability to guide the decision-making process in the direction
of a more refined feature space for a better classification performance in CNNs. Attention
modules have been integrated in different network architectures and tasks ranging from
image segmentation to classification. Their ability to retain informative features and
suppress redundant ones makes them a critical part of supervised neural network training.

In the study published by the authors of [16], an attention-based temporal model
was introduced for surgical phase recognition trained in an end-to-end approach. Results
showed that this method was able to achieve an 89.8% accuracy with a 23.3 FPS inference
time. A transformer-based model with attention, ‘OperA’, was proposed by the authors
of [17] for surgical phase recognition. The performance of this model on the Cholec80
dataset was able to achieve an accuracy of 91.26%. In the study published by the authors
of [18], an attention-guided network was examined for surgical tool detection on the m2cai-
16 tool dataset, achieving a state-of-the-art mAP of 86.9%. In the study published by the
authors of [19], a CNN model with attention was studied and evaluated on three different
datasets. Performance results on the Cholec80 database achieved a mAP of 91.65% with a
state-of-the-art, real-time recognition rate of 55.5 FPS.

In the study published by the authors of [20], a study on the performance of attention
modules for laparoscopic tool classification was conducted. The results obtained showed
a slight performance improvement when using attention modules over the base model.
A visual inspection performed on a subset of images also showed the benefits of using
attention modules in generating more focused informative features, thereby improving
tool localization. In the study published by the authors of [21], a tool localization study
was performed using an attention integrated network. Their results revealed that the
attention-guided network had an increase in localization accuracy of around 30%, which
stemmed from more focused class-aware spatial dimensions.

Following the achievements of attention-based techniques in improving base model
performance, with slight changes in computation performance, attention modules were
selected for this study’s surgical tool classification modeling approach, with the aim of
achieving a robust and efficient classification model.

2. Materials and Methods

Two established attention modules, namely the squeeze and excitation (SE) [6] and
convolutional block attention module (CBAM) [7], were evaluated for classifying surgical
tools in laparoscopic images. Additionally, a new attention module, termed P-CSEM, was
developed based on the advantages of the SE and CBAM modules to perform surgical
tool classification.

The work performed by the authors of [6] proposed a SE block that investigates the
inter-channel relations to improve network performance. Tests conducted on the ImageNet
2012 [9] dataset with different neural network architectures showed that incorporating
the attention block into a given model outperformed the baseline results with small com-
putational hindrance. An extension of the work performed by the authors of [6] by the
authors of [7] yielded a new CBAM block that focused on spatial and channel interde-
pendencies, highlighting that the spatial attention is ‘where’ the features of relevance are
located within the feature map. Tests conducted on the ImageNet 1K [22] dataset showed
the improved performance, and finer feature space, of the CBAM over both the base- and
SE-infused models.
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2.1. Squeeze and Excitation (SE) Block

One of the simplest, yet effective, attention modules is the squeeze and excitation
(SE) module [6]. They have shown the potential to improve the representation ability of
any network architecture through their ability to refine the channel features with minimal
computational hindrance.

The features that enter the SE blocks are first squeezed to extract the channel hierarchy
by means of a global average pooling (GAP). Two fully connected (FC) layers follow, with
the first FC creating a bottleneck for the data by reducing the dimensionality by a factor
of R. The reduction parameter R was selected to be 16 in this study, as smaller R values
showed reduced model performance (Section 5.2). The second FC expands the data back to
the original dimension, which is then passed through a sigmoid activation layer to bound
the feature data between 0 and 1. The output is then multiplied with the input features to
the SE block, thereby producing a more refined feature space with a concentration on the
more informative feature maps. Figure 1 shows the SE attention block architecture.
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fully connected (FC), and rectified linear unit (ReLU). C is the channel, H is the height, W is the width
of the dimensional space, and R is the reduction parameter.

2.2. Convolutional Block Attention Module (CBAM)

Convolutional block attention modules (CBAMs) [7] are an extension of the SE
block and have shown improvements in classification tasks. The CBAM not only con-
siders the channel significance, but also the spatial feature relevance in deciding ‘where’
to concentrate.

The CBAM channel-wise attention is similar to that of SE with the addition of a global
max pooling (GMP), that runs parallel to the GAP, to infer more relevant features. The
features then pass through two FCs reducing and rescaling the dimension as in the SE block
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structure. The refined features are then multiplied with the input features, which is later
passed through the spatial attention module that performs a spatial average pooling (SAP)
and a spatial max pooling (SMP) across the channels. The output then passes through a
convolutional layer with a 7 × 7 filter size and a number of filters set to one. Following this
step, a sigmoid activation function is performed before multiplying the output with the
input feature space, thereby achieving a refined feature space of both spatial and channel
focus. Figure 2 presents the CBAM attention block architecture.
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Figure 2. Convolutional block attention module (CBAM) architecture. Global average pooling
(GAP), global max pooling (GMP), fully connected (FC), rectified linear unit (ReLU), spatial average
pooling (SAP), spatial max pooling (SMP), channel-wise concatenation (Concat), and convolution
with 7 × 7 filter (Conv). C is the channel, H is the height, W is the width of the dimensional space,
and R is the reduction parameter.

2.3. Parallel-Convolutional Squeezed and Excitation Module (P-CSEM)

The parallel-convolutional squeezed and excitation module (P-CSEM) is a new atten-
tion module that has been introduced in this work. The P-CSEM is composed of two series
blocks that run in parallel to each other. The first series block incorporates the advantages of
the SE block by refining the feature space across the channel domain, thereby highlighting
the strongest map of influence, from the multitude of channels. This structure is coupled
with the second series block, which makes use of the CBAM concept to extract the area
of focus from the feature space by applying a SAP operation. Following this, the features
from the SAP are excited to a higher dimensional space via a convolutional layer of filter
size 3 × 3 and number of channels 8, equivalent to the number of tools (7 tools) plus
one representing no tool. The output then passes through a rectified linear unit (ReLU)
activation function before being entered into another convolutional layer, which squeezes
the channel dimension back to one with a filter size of 3 × 3. The outputs from both series
blocks are then multiplied together.

The input features are then rescaled with the new feature space from the series blocks
to achieve better refinement before moving on in the network architecture. The structure
of the P-CSEM is depicted in Figure 3, along with the activation dimensions at each block.
The reduction parameter (R) used to reduce the feature space was set to 16 following the
results of an ablation study (as detailed in Section 5.2).
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Figure 3. P-CSEM attention module architecture. Global average pooling (GAP), fully connected
(FC), rectified linear unit (ReLU), spatial average pooling (SAP), and convolution with 3 × 3 filter
(Conv). C is the channel, H is the height, W is the width of the dimensional space, and R is the
reduction parameter.

2.4. System Modeling

To highlight the ability of attention modules to improve network outcomes, a compar-
ison between four models, one base, and three attention infused models was conducted.
The CNN architecture of ResNet50 [8] with pre-trained weights, that was trained on the
ImageNet [9] dataset, was selected as a base model. ResNet50 was chosen based on the
results published by the authors of [10,20,23] that showed the efficacy of residual networks
in classifying surgical tools.

The base model of ResNet50 is composed of five convolutional blocks, with varying
residual blocks in each, followed by a GAP and an FC layer. The attention modules are
flexible, such that they can be placed in different positions within any existing architecture.
In this work, the attention modules of SE, CBAM, and P-CSEM were integrated into the
base model after the second, third, and fourth convolutional blocks, respectively, after
addition operator i.e., layer and prior to the ReLU activation. The ResNet50 is composed of
177 layers with a 224 × 224 × 3 image input and a total of 25.6 million parameters. The
network architecture, along with the placement of the attentions, is depicted in Figure 4.
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The attention modules were placed in the described position to achieve the best
possible data refinement while balancing the computational and model performance. The
features that are generated in the early layers, i.e., in convolution block 1, of the architecture
do not significantly contribute towards the class-specific direction, but more of a general
feature extraction, and therefore it was not considered as a location to include attention.
In the following 2nd, 3rd, and 4th convolution blocks, the features became more class
specific and, therefore, a guidance towards more relevant and informative features should
be considered. The top layers of the network deal with a feature space that is small in
spatial dimension and class specific; therefore, an attention module at this stage would be
contrary to the performance improvement.

An ablation study was performed to validate the placement methodology chosen. The
addition of attention modules within the convolution blocks, i.e., in the residual blocks, was
considered. This resulted in the addition of 16 attention modules throughout the network
architecture. The use of four attention modules during the early stages of the architecture,
i.e., in the residual blocks of the 2nd and 3rd convolution, was also examined as per the
study published by the authors of [20].

2.5. Training Settings

The models were run under a MATLAB 2021a environment (The MathWorks, Natick,
MA, USA), on a desktop with an Intel Xeon @ 2.20 GHz (Intel®, Santa Clara, CA, USA),
64.00 GB memory (RAM), and 64-bit Windows 10 operating system (Microsoft Corporation,
Redmond, WA, USA) with an NVIDIA graphics card GeForce RTX 2080Ti (NVIDIA Corpo-
ration, Santa Clara, CA, USA). A varying learning rate, beginning with 0.002 and decaying
at a rate of 0.0009 per iteration, was run for 10 epochs for model training. A stochastic
gradient decent with momentum (SGDM) optimization function was used with a batch
size of 50 images and cross-entropy loss function.

2.6. Evaluation Criteria

The presence of multiple tools in one image transforms the inference into a multi-label
classification task. In order to evaluate the model’s ability in recognizing more than one
class in an image, the sigmoid activation function was used prior to the classification layer.
The sigmoid output corresponds to a probability between 0 and 1 for each class. The model
was trained on the first 40 videos and tested using the last 40 videos of the Cholec80 dataset.

To evaluate the performance of the models, the mean of the average precision (mAP)
of each of the tools was determined across the testing set. A network explain-ability
analysis based on a strategy adopted by the authors of [21], using gradient-weighted class
activation mapping (Grad-CAM) [24], was performed separately. Equation (1) describes
the computation of the evaluation metric for AP:

APc =
∫ b

a f (xc)dx =

(
1
2

N−1
∑

n=0
( f (xn+1) + f (xn))∆xn

)
c

(1)

where c denotes the class number. APc is the average precision of the model for a certain
class c; the recall boundary values are set as a = 0 and b = 1. xc represents the recall of
class c, and f (xc) is the corresponding precision value of c. N is the total number of points
of xc. The recall and precision of point N is calculated based on the different probability
thresholds determined using an exponential curve of values between 0 and 1.

3. Results
3.1. Database Description and Distribution

The publicly available Cholec80 database was chosen for the training and testing of
the different models. The database consists of 80 cholecystectomy procedures that were
recorded at the University Hospital of Strasbourg. The video recordings were captured
at a rate of 25 Hz with tool annotations every 1 FPS. Seven surgical tools (grasper, hook,
bipolar, scissors, clipper, irrigator, and specimen bag) were present in the database. The
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tool annotation conditions were such that at least half of the tool tip should be observed
in the labeled frame [4]. The database is constituted of 184,498 image frames from the
80 videos. Figure 5 represents an illustration of the different surgical tool tips of (a) Grasper,
(b) bipolar, (c) hook, (d) scissor, (e) clipper, (f) irrigator, and (g) specimen bag, available in
the Cholec80 dataset [4].
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Figure 5. Samples images of the surgical tool tips present in the Cholec80 database. (a) Grasper,
(b) bipolar, (c) hook, (d) scissor, (e) clipper, (f) irrigator, and (g) specimen bag.

Table 1 shows a summary of the distribution of the images from the Cholec80 dataset
into the different classes and sets. The surgical tools, grasper, and hook displayed domi-
nance over both the training and testing sets, with a combined presence of more than 83%
of the entire data.

Table 1. Distribution of images from the Cholec80 database into their respective classes.

Training Testing

Grasper 56,800 45,788
Bipolar 4106 4770
Hook 48,437 54,669

Scissors 1624 1630
Clipper 3217 2769
Irrigator 5384 4430

Specimen bag 5760 5702
Total 86,304 98,194

To evaluate the performance of the tool tip localization prediction of the models,
bounding boxes were annotated for the videos numbered from 41 to 45. These annotations
represent the ground truth for the localization assessment.

The EndoVis 2019 [25] challenge dataset was used for the generalizability evaluation.
This dataset included classes that were not present in the Cholec80 database, and therefore
these classes and, consequently, the image frames, were removed from processing.

3.2. Model Performance

As can be seen from the AP and mAP results from Figure 6, the P-CSEM attention
module outperformed the other models in each tool category except for the irrigator class.
A significant improvement can be observed between the base and P-CSEM model for the
grasper tool, with an increase in AP of around 7.5%, as well as the scissors tool with around
4%. The P-CSEM-integrated model achieved a mAP of 93.14% compared to 91.38% and
91.57% of the SE and CBAM models, respectively, also achieving a 1.76% improvement
over the base model.
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A closer look into the activations of each of the four models was taken. The models
were able to separate the different components from the image, with the P-CSEM and
SE-integrated models achieving a more comprehensive and refined selection.

The inference times for the classification of a single image frame was calculated for
each model. The experiments were carried out with GPU and CPU. The P-CSEM model
achieved a recognition rate of 158 Hz and 29 Hz, the base model 166 Hz and 42 Hz, the SE
model 165 Hz and 34 Hz, and the CBAM model 155 Hz and 30 Hz, with GPU and CPU,
respectively.

4. Discussion

As shown in Figure 6, the P-CSEM attention module was able to achieve a better
performance over the base model in nearly all tools. The increase in the scissor tool was
noted to be due to the underrepresentation of this class in the class distribution; therefore,
the attention module was able to highlight the particular features of this tool in order to
boost its recognition rate. The significant increase in the Grasper tool was attributed to a
more refined feature space thanks, in part, to the attention module. The learning process
guided by the attention module was able to distinguish between the tips of a grasper and a
clipper as they are quite similar in structure. The reduced performance seen in the irrigator
was linked to the shape and design of the tool, as in most images, the tip of the irrigator
was often hidden under tissue, thereby making it difficult to be recognized. It is important
to mention the strength in recognizing the correct tool, which was attributed to the fine
refined feature space that is more precise to tool specifications rather than the general shape
of the instrument.

Following the activations and Grad-CAM evaluation, the P-CSEM-integrated model
was able to separate the different components better than the base model. The more
the features were refined, as in the P-CSEM model, the more focused the true-positive
prediction becomes, due to a more separable decision boundary, reducing the likelihood of
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focusing on areas that are not specific to the tool tip. The P-CSEM also displayed robustness
to noise, such as light reflection.

Table 2 shows the mAP performance results of different methods on the Cholec80
dataset. As observed, the ResNet50 + P-CSEM model performed well, achieving the runner-
up position in the list of non-temporal tool recognition methods. It is important to mention
that the best-performing model was trained on a substantially large number of iterations
(70 K) compared to the 17,270 iterations used to train the proposed ResNet50 + P-CSEM
model. The state-of-the-art (SOTA) also used a different training-to-validation ratio, coupled
with data augmentation and data elimination, compared to the implemented approach of
the P-CSEM. The network architecture used in the SOTA was also very deep, at 164 layers,
which increases the possibility of overfitting the model given the high number of iterations
and considering the use of transfer learning for initial weights.

Table 2. Comparison of the mAP ± standard deviation results from different methods on the Cholec80
dataset. Value in bold represents the best performance. Values in () represent the results from the
method re-implementation.

mAP (%)

Twinanda et al. [4] 81.00 ± 11.84
Jaafari et al. [11]—original 93.75 ± 5.84 (89.17 ± 8.83)

Shi et al. [19] 91.65
Vardazaryan et al. [12] 87.40 ± 17.21

Yang et al. [15] 91.60
ResNet50 {base model} 91.38 ± 5.41

ResNet50 + SE 91.38 ± 5.02
ResNet50 + CBAM 91.57 ± 5.00

ResNet50 + P-CSEM 93.14 ± 4.72

A re-implementation of the SOTA architecture using the training and testing conditions
set in this study was conducted. The results revealed that the re-implemented SOTA
achieved an accuracy of 89.17%, which is less than that of the base model results reported
in this work.

The P-CSEM and base models were evaluated against a different dataset of cholecys-
tectomy tools from the EndoVis 2019 [25] challenge. This evaluation was performed in
order to observe the generalizability of the trained model on data from a different source.
The experiments revealed that the P-CSEM model achieved a mAP of 59.52%, while that of
the base model achieved a mAP of 58.57%. Although these models were not able to achieve
comparable mAP results as in the Chole80 dataset, their results were deemed acceptable
considering the differences in tool shape and design.

The attention-integrated model described in this study performed well on the Cholec80
dataset. Certain limitations were considered for this study, such as the fixed dataset used
for testing, imbalanced class distribution, and model explain-ability. To tackle these issues,
future work will involve using a larger dataset and the incorporation of the temporal
information. To increase the size of the dataset further, and address the imbalanced class
distribution, image augmentation techniques could be applied. The inference rates also
revealed that any one of these models can be integrated and used in a real-time environment,
as image capture rates in laparoscopic surgeries typically range between 50/60 Hz.

5. Ablation Study
5.1. Attention Integration

The placement of the attention block within the existing architecture is important to
the overall performance improvement of the model. To that end, different locations and
combinations were tested for their optimal performance. First, in Place 1, the attention
blocks were placed after each residual block within the ResNet50 architecture. This adds
more to the computational power by having 16 attention blocks added to the entire frame-
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work. The second placement group, Place 2, was conducted after the 2nd, 3rd, and 4th
convolutional blocks, as previously described in Section 2.4. Here, three attention blocks
were incorporated into the framework. The last placement, Place 3, was set inside the
convolution blocks of two and three, following the first and second residual blocks of each.
This placement added four attention blocks to the existing architecture.

Table 3 represents the attention integration results. The mAP reveals that Place 2
achieved the best performance in both the P-CSEM and SE; although, the margin between
the results was small, with most instances having a less than 1% difference. The compu-
tational burden was also considered as a factor, and with placement 2 having the least
number of blocks added to the existing architecture, making the computational load less
than that of the other placements, while still achieving comparable results.

Table 3. mAP (%) results of attention block integration of the different modules. Values in bold
represent the best performances.

# of Attention Blocks ResNet50 + P-CSEM ResNet50 + SE ResNet50 + CBAM

Place 1 16 91.50 90.94 91.03
Place 2 3 93.14 91.38 91.57
Place 3 4 91.01 91.10 91.73

5.2. Reduction Parameter

The reduction parameter (R) is also a critical selection for how much information is
retained. The selection of the parameter for this study followed the work by Hu et al. [6],
which was 16. An ablation study was carried out on the P-CSEM to highlight the impact
of this factor on the recognition process. Three reduction rates of four, eight, and sixteen
were selected for R. The reduction parameter analysis was only carried out on the P-CSEM,
since it showed the best overall performance, as observed in the Results Section 3.2.

Table 4 represents the results of the ablation study performed on the reduction param-
eter (R) for the P-CSEM module. As observed, the reduction rates of four and eight had a
higher computational training time as well as parameter count. Although the mAP results
revealed that the reduction parameter of eight performed better than with sixteen, the
improvement was seen as negligible with a difference of around 0.07% for the mAP. When
comparing the parameter count and the duration of training, the reduction parameter of
16 performed optimally with a faster training time and least number of parameters.

Table 4. mAP results, duration of each model’s training, and number of parameters for each reduction
parameter for the ResNet50 + P-CSEM model. Values in bold represent the best performances.

Reduction Parameter (R) mAP (%) Time (h:m) Parameters

4 93.18 12:47 24.2 M
8 93.21 12:50 23.9 M
16 93.14 12:10 23.7 M

6. Conclusions

In this study, a new attention module was introduced that captures and refines relevant
spatial and channel features, working in parallel to improve the performance of surgical
tool recognition. The attention-infused model of P-CSEM was able to outperform the base
and other attention modules by a 1.76% margin on the Cholec80 dataset. The proposed
method was able to achieve second place among the state-of-the-art; however, it utilized a
fraction of the training time and iteration count of the first place model. The reduced time
and resources make this attention module desirable in improving the performance of base
network architectures.
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