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a b s t r a c t 

Background: High-flow nasal cannula (HNFC) is able to provide ventilation support for patients with hy- 

poxic respiratory failure. Early prediction of HFNC outcome is warranted, since failure of HFNC might 

delay intubation and increase mortality rate. Existing methods require a relatively long period to iden- 

tify the failure (approximately 12 h) and electrical impedance tomography (EIT) may help identify the 

patient’s respiratory drive during HFNC. 

Objectives: This study aimed to investigate a proper machine-learning model to predict HFNC outcomes 

promptly by EIT image features. 

Methods: The Z-score standardization method was adopted to normalize the samples from 43 patients 

who underwent HFNC and six EIT features were selected as model input variables through the random 

forest feature selection method. Machine-learning methods including discriminant, ensembles, k-nearest 

neighbour (KNN), artificial neural network (ANN), support vector machine (SVM), AdaBoost, xgboost, lo- 

gistic, random forest, bernoulli bayes, gaussian bayes and gradient-boosted decision trees (GBDT) were 

used to build prediction models with the original data and balanced data proceeded by the synthetic 

minority oversampling technique. 

Results: Prior to data balancing, an extremely low specificity (less than 33.33%) as well as a high accuracy 

in the validation data set were observed in all the methods. After data balancing, the specificity of KNN, 

xgboost, random forest, GBDT, bernoulli bayes and AdaBoost significantly reduced (p < 0.05) while the area 

under curve did not improve considerably (p > 0.05); and the accuracy and recall decreased significantly 

(p < 0.05). 

Conclusions: The xgboost method showed better overall performance for balanced EIT image features, 

which may be considered as the ideal machine learning method for early prediction of HFNC outcomes. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

At present, high-flow nasal cannula (HFNC) is widely used 

o prevent or minimize the duration of invasive mechanical 

entilation [1] , and recent studies have shown that it improves 

espiratory drive as well as lung mechanics, enhances CO 2 removal, 

nd reduces 90-day mortality [ 2 , 3 ]. However, not all patients can
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enefit from HFNC. For instance, Roca’s research on patients with 

evere hypoxemia showed that the failure rate of HFNC treatment 

as as high as 28% [4] . The mortality rate of patients in ICU with

racheal intubation after more than 48h of HFNC could be higher 

han that of patients with re-intubation within 48h of HFNC, 

hereas the success rate of re-extubation could be lower [5] . 

FNC may delay the tracheal intubation of patients in some cases, 

eading to the deterioration of prognosis. 

The best-known parameters, such as respiratory rate- 

xygenation (ROX) ratio, respiratory rate (RR), oxygenation index, 

eripheral capillary hemoglobin oxygen saturation (SpO 2 ), acute 

hysiology score II, the severity of hypoxemia and C-reactive 
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rotein level, may help predict HFNC failure. However, these 

arameters can not directly reflect lung ventilation status and thus 

 longer period (approximately 12 h) is required [6] . 

Electrical impedance tomography (EIT) is a novel non-invasive, 

adiation-free, bedside method for monitoring of ventilation 

hanges related to different lung conditions, which include lung 

egional recruitment and overdistension during PEEP titration in 

atients with acute respiratory distress syndrome [7–10] . Recent 

tudy has indicated that EIT can help to identify the overdistension 

aused by HFNC [11] . Besides, EIT can also observe pendelluft and 

iaphragm activities and monitor the related lung injuries, which 

ay facilitate the identification of patients’ respiratory drive [12–

4] . 

In our previous study, we used EIT to observe changes in spatial 

nd temporal ventilation distributions in 46 patients with acute 

espiratory failure (ARF) during the first hour of HFNC application 

15] . The present study aims to propose a proper machine-learning 

odel to predict HFNC within 48h outcomes using image features 

aptured by various EIT indexes, so as to indicate immediate me- 

hanical ventilation treatment in case of invalid HFNC, which is 

ritical for patients to choose sequential oxygen therapy after ven- 

ilator weaning, especially for those difficult-to-wean patients. 

. Materials and methods 

As shown in Fig. 1 , the study aims to adopt the following pro-

ess: Firstly, collect patient EIT data in clinic continuously; Sec- 

ndly, analyze and extract patient EIT data features, extract patient 

asic clinical records (including name, age, height, weight, etc.), 

nd integrate label information based on clinical observation infor- 

ation (including Apache II, complications, initial FiO 2 , PaO 2 , HFNC 

ntervention outcomes, etc.); Thirdly, after data preprocessing, fea- 

ure selection method is used to select features from EIT features 

s model features; Fourthly, integrate EIT data features with la- 

el to form sample clusters, then balance the samples based on 

he feature of HFNC result; Fifthly, Divide the samples into train- 

ng and testing groups; Sixthly, construct the 48 h HFNC treatment 

rediction model (hereinafter referred to as the prediction model) 

y machine learning; Seventhly, testing and comparing the effec- 

iveness of predicted models. 

.1. Data measurement 

The data from our previous study were analyzed retrospec- 

ively [16] . The study was approved by the ethics committees of 

enji Hospital, School of Medicine, Shanghai JiaoTong University 

KY2021-057-B). Written informed consent was obtained from all 

atients or their legal representatives prior to the study. 

Patients were treated with HFNC after ICU admission from 

021.05.27 to 2021.06.20 and continuously screened by EIT during 

nderwent HFNC for a period of 1h. Only patients with acute res- 

iratory failure ARF (respiratory rate > 25 breaths/min, PaO 2 /FiO 2 

 300mmHg) were included. Exclusion criteria included age < 18 

ears, pregnancy, and lactation period, weaning from the ventilator, 

ntubation required, tracheotomy, bronchoscopy, absence of com- 

itment to pursue full life support, and any contraindication to 

he use of EIT. We have to drop 3 HFNC successes samples because 

n the 2021 paper, the data analysis was conducted for each pe- 

iod for 5 min. However, in the present study, when we analyzed 

he entire 1 h EIT data, data in 3 patients were with insufficient 

uality in some parts. The patients had spontaneously breathing in 

he supine position during the process, at the end of which 11 pa- 

ients failed HFNC and 32 patients succeeded. The detailed patient 

nformation is available from our previous study. An EIT electrode 

elt with 16 electrodes was placed around the thorax at the 4 ∼5th 

ntercostal space, and one reference electrode was placed on the 
2 
bdomen (PulmoVista 500, Dräger Medical, Lübeck, Germany). The 

requency and the amplitude of the currents were selected auto- 

atically according to the background noise of the measurement 

nvironment. The EIT images were reconstructed with the software 

f the manufacturer (EIT Data Review Tool, Dräger Medical, Lübeck, 

ermany). 

.2. Feature calculation 

As shown in Table 1 , several EIT-based indexes were calculated 

t three time points (before HFNC, T1; 30 min after HFNC com- 

encement, T2; 1h after HFNC termination, T3) as the features of 

IT images, which included global inhomogeneity (GI), the center 

f ventilation (CoV), regional ventilation delay (RVD), rapid shal- 

ow breathing index (RSBI), tidal impedance variation (TIV), end- 

xpiratory lung impedance (EELI), minute volume (MV), and inspi- 

ation time (T insp ). To investigate the changes from the baseline 

nd the line representing HFNC treatment, the differences of the 

IT indexes between the time points were calculated and normal- 

zed to the values at T1. 

EELI, end-expiratory lung impedance; TIV, tidal impedance 

ariation; RVD, regional ventilation delay; CoV, center of ventila- 

ion; SD, standard deviation; GI, global inhomogeneity index; RSBI, 

apid shallow breathing index; Tinsp, inspiration time; MV, minute 

olume. 

Inspiratory time (T insp ) refers to the time interval from the be- 

inning of inspiration to the beginning of exhalation. GI indicates 

he degree of the heterogeneity of ventilation, which is calculated 

rom the difference between the impedance change of each pixel 

n the image of the target area and the average impedance change 

f the whole lung [ 17 , 18 ]. CoV depicts the ventilation distribution

nfluenced by gravity or various lung diseases(relative impedance 

eighted with a location in the anteroposterior coordinate) [19] . 

egional ventilation distribution was obtained by dividing the tidal 

mage into four horizontal, anterior-posterior segments of equal 

eight (regions of interest, ROI), which was denoted as ROIs 1-4 

20] . Changes of EELI compared to T1 ( �EELI) were also calculated 

or individual ROIs. RVD index characterizes the regional ventila- 

ion delay as pixel impedance rising time compared to the global 

mpedance curve [21] , which may be used to assess tidal recruit- 

ent/derecruitment. 

In addition to these conventional EIT-based indexes, we pro- 

osed two parameters relevant to spontaneously breathing pa- 

ients, namely RSBI and MV. 

RSBI is defined as the ratio of the respiratory rate to TV. Since 

he change in TV can be estimated by the measured impedance, 

SBI EIT was calculated as the ratio of the respiratory rate to tidal 

mpedance variation in arbitrary units. where i and N denote the 

ixel i in the lung area N. Similarly, MV was estimated as the mul- 

iplication of the respiratory rate and tidal impedance variation in 

rbitrary units (MV EIT ). 

 V ≈ M V EIT = RR ×
N ∑ 

i =1 

T V i 

nspiration time over expiration time (I:E) was calculated based on 

he global impedance-time curves. 

.3. Data grouping and preprocessing 

A total of 46 features were obtained from EIT images at the 

hree time points and used as predictor variables. The patients 

ere grouped as follows: 30 cases in the training group (22 cases 

f HFNC success and 8 HFNC failure) and 13 cases in the test group 

10 cases of HFNC success and 3 HFNC failure), as shown in Table 1 .

he outcome was defined as HFNC result with the two groups 

success and failure), which were converted to 1 and 0 ( Table 2 ). 
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Fig. 1. Schematic diagram of the proposed methodology. The graph can be divided into three parts: data collection, model training, and model test. In data collection 

section, there are three functional modules as follows: Data measurement: Collect patient EIT data in clinic continuously, which receives and converts the EIT data into 

image information. Data features: Analyze and extract patient EIT data features from EIT images, can extract patient basic clinical records (including name, age, height, 

weight, etc.), and integrate label information based on clinical observation information (including Apache II, complications, initial FiO 2 , PaO 2 , HFNC intervention outcomes, 

etc.). Dimension selection: Select critical dimensions from image feature data and form sample feature data. These critical features are selected from data features by 

random forest feature selection method and are coupled with the sample label selected from electronic medical record. The model training section includes three parts as 

data balancing, data grouping and model training. Data balancing: Integrate EIT data features with label to form sample clusters. The sample is balanced by SMOTE method, 

then is divided into training and test set in data grouping section. Model training is used to train and optimize the model, which applies the balanced samples to build 

model and optimize the model through iterative training. In model test section, the test data is applied to the model which have been trained for performance test. Compare 

with test set label and generates the confusion matrix, AUC curve and other testing tables by the performance comparison function. 

3 
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Table 1 

Summary the EIT-based features. 

No. Name Features Parameters 

1 EELI EELI corresponds to the end-expiratory lung volume, the changes of which 

compared to T1 ( �EELI) are calculated for individual ROIs, such as 

EELI_T2-T1_ROI1 indicates the alteration between T2 and T1 in ROI1. 

EELI_T2-T1_ROI1, EELI_T2-T1_ROI2, EELI_T2-T1_ROI3, 

EELI_T2-T1_ROI4 

2 TIV TIV is measured by the difference between the impedance at the end of 

inhalation and exhalation, can reflect the ventilation status within the ROI. 

TIV_T1_ROI1, TIV_T1_ROI2, TIV_T1_ROI3, TIV_T1_ROI4, 

TIV_T2_ROI1, TIV_T2_ROI2, TIV_T2_ROI3, TIV_T2_ROI4, 

TIV_T3_ROI1, TIV_T3_ROI2, TIV_T3_ROI3, TIV_T3_ROI4 

3 RVD RVD can be used to assess tidal recruitment/ derecruitment and represents the 

time heterogeneity of quantifiable regional ventilation, which can be measured 

by pixel impedance rising time compared to the global impedance curve. 

RVD_T1_ROI1, RVD_T1_ROI2, RVD_T1_ROI3, RVD_T1_ROI4, 

RVD_T2_ROI1, RVD_T2_ROI2, RVD_T2_ROI3, RVD_T2_ROI4, 

RVD_T3_ROI1, RVD_T3_ROI2, RVD_T3_ROI3, RVD_T3_ROI4 

4 CoV CoV depicts the ventilation distribution influenced by gravity or various lung 

diseases (relative impedance value weighted with a location in the 

anteroposterior coordinate). 

CoV_T1, CoV_T2, CoV_T3 

5 TIV_SD TIV_SD, the standard deviation of TIV, estimates the ventilation distribution 

heterogeneity. 

TIV_T1_SD, TIV_T2_SD, TIV_T3_SD 

6 GI GI indicates the degree of the heterogeneity of ventilation and is calculated from 

the difference between the impedance change of each pixel in the image of the 

target area and the average impedance change of the whole lung. 

GI_T1, GI_T2, GI_T3 

7 RSBI RSBI is defined as the ratio of the respiratory rate to TV. Since the change in TV 

can be estimated by the measured impedance, can be calculated as the ratio of 

the respiratory rate to tidal impedance variation in arbitrary units. 

RSBI_T1, RSBI_T2, RSBI_T3 

8 T insp T insp indicates the time interval from the beginning of inspiration to the 

beginning of exhalation. 

T insp _T1, T insp _T2, T insp _T3 

9 MV MV can be estimated as the multiplication of the respiratory rate and tidal 

impedance variation in arbitrary units. 

MV_T1, MV_T2, MV_T3 

Table 2 

Sample grouping. 

group total training group test group 

HFNC success (1) 32 22 10 

HFNC failure (0) 11 8 3 
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Because the ratio of data dimension of the training sample size 

as greater than 0.1 (approximately 3:1), the dimension of the 

raining set should be reduced according to Johnson Lindenstrauss 

rinciple. In this study, the random forest feature selection method 

as used to rank the original features by computing the random 

orest scores of importance based on the correlation. First, a de- 

ision tree was built and out of bag (OOB) data were selected to 

alculate the error of out of bag data (err OOB1 ). Next, the noise in-

erference was added randomly to the characteristics of all samples 

f OOB data and the error of OOB (err OOB2 ) was calculated again. 

ssuming that there were M trees in the forest, the importance of 

eature X is as follows: 

p X = 

M ∑ 

i =1 

( er r i,OOB 2 − er r i,OOB 1 ) 

M 

here err i,OOB1 and err i,OOB2 denote the error of out of bag data and 

he error of out of bag data with added noise interference of i th 

ree in the forest, respectively. 

Additionally, the Z-score method was employed to standardize 

he predictor variables to avoid an enormous changing range in 

he model weights [19] , which might lead to the instability of nu- 

erical calculation; also, standardization could help accelerate al- 

orithm convergence. Considering the imbalanced classes between 

he HFNC success and failure (approximately 3:1) samples, the syn- 

hetic minority oversampling technique (SMOTE) was adopted to 

rocess the predictor variables to balance the two groups. 

.4. Model derivation and validation 

The following machine learning methods were the widely used 

o construct predictive models in the field of medical applications: 

iscriminant, ensembles, k-nearest neighbour (KNN), artificial neu- 

al network (ANN), support verctor machine (SVM), AdaBoost, xg- 
4 
oost, logistic, random forest, bernoulli bayes, gaussian bayes and 

radient-boosted decision trees (GBDT). Accordingly, these meth- 

ds were involved in this study as well. Details of the model set- 

ings were summarized in the Appendix 1 . Kolmogorov Smirnov 

est was used to test the normality of samples. To explore the in- 

uence of data balancing operations on the performance of ma- 

hine learning methods, accuracy, recall, precision, specificity and 

rea under curve (AUC) in the SMOTE-balanced data sets were 

ompared with those in the imbalanced data sets by employing the 

ilcoxon rank sum test in the statistical analysis software SPSS 22 

IBM Software, Armonk, NY, USA). A p value < 0.05 was considered 

tatistically significant. 

. Results 

.1. Selection of important predictors for the HFNC prediction model 

As shown in Fig. 2 , the importance of predictor variables 

as ranked by sorting the top 20 items in a descending order. 

n this study, the top six items were selected as the important 

redictor variables for the HFNC prediction model, which were 

ELI_T2-T1_ROI4, TIV_T1_ROI1, EELI_T2-T1_ROI2, TIV_T2_ROI2, 

VD_T1_ROI3 and TIV_T1_ROI2, respectively. 

.2. Performance comparison among machine learning methods for 

he analysis of imbalanced data against balanced data 

Fig. 3 shows accuracy, recall, precision, specificity and AUC of 

he twelve machine learning methods for the analysis of the im- 

alanced data sets. An extremely low specificity (less than 33.33%) 

s well as a high accuracy in the validation data set were observed. 

Fig. 4 shows accuracy, recall, precision, specificity and AUC of 

he twelve machine learning methods for analysis of the SMOTE- 

alanced data sets. After the data balancing process, the specificity 

ncreased from approximately 33.33% to nearly 10 0.0 0%. 

For all the machine learning methods, accuracy and recall sig- 

ificantly reduced after the data balancing process compared with 

hat before balancing (p < 0.05), and AUC did not have signifi- 

antly improved before and after balancing (p > 0.05). The speci- 

city of KNN, xgboost, Random Forest, GBDT, Bernoulli Bayes and 
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Fig. 2. Important Predictors for the HFNC Prediction Model (Top 20 items). 
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daBoost all significantly improved after the data balancing pro- 

ess (p < 0.05). 

PPV represents the proportion of actual patients who have suc- 

essfully intervened by HFNC in all judged as success by the pre- 

iction method; NPV represents the proportion of actual patients 

ho have failed intervened by HFNC in all judged as failure by 

he prediction method, which reflect the credibility of the "suc- 

ess" and "failure" in the predicted results. As shown in Table 3 , 

he NPV was all less than 50% in the prediction results of the 

odel trained with imbalanced data. KNN, SVM, and logistic mod- 

ls, the results of "intervention failure in actual was predicted as 

uccessful mistakenly " and "predicting the result of intervention 
ig. 3. The performance of discriminant, ensembles, KNN, ANN, SVM, AdaBoost, xg- 

oost, GBDT, logistic, random forest, Gaussian Bayes and Bernoulli Bayes for analysis 

f the imbalanced data. Xgboost was highlightedfor its best performance. 

F

b

a

5 
s failure correctly" were all 0, resulting in a denominator of 0 in 

he NPV calculation formula. This reflects the low credibility of the 

odel in predicting patients with potential intervention failure. In 

pplication, following the model’s prediction may results “blindly”

ay lead to erroneous judgments of "HFNC being too optimistic"; 

fter data balancing, NPV has achieved an overall improvement, 

ith XGBoost, Random Forest, and Bernoulli Bayes models all ex- 

eeding 80% ( Table 4 ). However, the "misdiagnosis" of successful 

FNC treatment but failed HFNC treatment in actual is more crit- 

cal in clinic. Therefore, it is more recommended to use models 

ith higher recall and NPV as Random Forest and GBDT in clinic. 
ig. 4. The performance of discriminant, ensembles, KNN, ANN, SVM, AdaBoost, xg- 

oost, GBDT, logistic, random forest, Gaussian Bayes and Bernoulli Bayse for the 

nalysis of the balanced data. Xgboost was highlighted for its best performance. 
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Table 3 

The overall performance of prediction models for the imbalanced data set. 

No. Model Accuracy Recall Specificity PPV NPV 

1 discriminant 76.92 100.00 0.00 76.92 NaN 

2 ensembles 69.23 80.00 33.33 80.00 33.33 

3 KNN 76.92 100.00 00.00 76.92 NaN 

4 ANN 61.54 60.00 66.67 85.71 33.33 

5 SVM 76.92 100.00 0.00 76.92 NaN 

6 XGBoost 76.92 90.00 33.33 81.82 50.00 

7 Logistic 76.92 100.00 0.00 76.92 NaN 

8 Random Forest 69.23 90.00 0.00 75.00 0.00 

9 GBDT 61.54 70.00 33.33 77.78 25.00 

10 Gaussian Bayes 69.23 90.00 0.00 75.00 0.00 

11 Bernoulli Bayes 69.23 90.00 0.00 75.00 0.00 

12 AdaBoost 69.23 80.00 33.33 80.00 33.33 
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.3. Performance comparison among the machine learning models 

Comparisons of AUCs were also conducted among different ma- 

hine learning methods. The results indicated that, for the imbal- 

nced data set ( Fig. 3 ), the performance of discriminant, ANN and 

VM was better than that of the other methods (p < 0.05). Ensem- 

les (modeling method: Boost, iterations:300, learning method: 

iscriminant) and ANN (feedforwardnet:3, trainFcn: OneStep Se- 

ant Algorithm) had the best validation accuracy of 84.62% and 

ecall of 100%. However, the specificities of all the machine learn- 

ng methods except ANN (feedforwardnet:3, trainFcn: Levenberg- 

arquardt) were less than 35%. For the SMOTE-balanced data set, 

he specificities of most machine learning methods were higher 

han 60%. 

In general, the specificity performance of the machine learn- 

ng methods improved greatly after the data balancing process. 

s shown in Fig. 4 , after SMOTE balancing, the specificities of 

NN, random forest and GBDT reached the maximum of 10 0.0 0%. 

he overall performance of xgboost method improved considerably, 

hose accuracy, specificity and AUC were much better than those 

or the imbalanced data set, as shown in Fig. 5 . 

. Discussion 

In the present study, we demonstrated the feasibility to pre- 

ict HFNC outcomes with EIT measurements and machine learn- 

ng methods. The feature parameters were selected based on EIT 

mage analysis, and the machine learning methods were applied 

o establish the prediction model based on the feature param- 

ters. The most important six predictor variables for the HFNC 

rediction model included EELI_T2-T1_ROI4, TIV_T1_ROI1, EELI_T2- 

1_ROI2, TIV_T2_ROI2, RVD_T1_ROI3 and RVD_T1_ROI2. The high- 

st sensitivity and specificity were attained with xgboost method. 

The prediction of HFNC failure at an early phase is of clinical 

mportance. Roca et al. introduced the ROX index to predict HFNC 
Table 4 

The overall performance of prediction models 

No. Model Accuracy Reca

1 discriminant 60.00 90.00

2 ensembles 70.00 70.00

3 KNN 60.00 70.00

4 ANN 70.00 80.00

5 SVM 65.00 80.00

6 XGBoost 84.21 88.89

7 Logistic 68.42 77.78

8 Random Forest 89.47 77.78

9 GBDT 84.21 66.67

10 Gaussian Bayes 47.37 88.89

11 Bernoulli Bayes 63.16 100.0

12 AdaBoost 73.68 55.56

6 
ailure, which has been widely used in clinical practice [6] . The 

OX index is caculated by indirect indexes representing oxygena- 

ion and respiratory drive, which begins to have optimal perfor- 

ance 12h after HFNC initiation. Colleges made effort s to improve 

he efficiency of the ROX index at an early phase. The values of 

he modified ROX index with heart rate (ROX/HR 

∗100) above 6.80 

ere significantly associated with a lower risk of intubation in ARF 

atients at 10 h after HFNC [20] . Another retrospective study sug- 

ested that ROX index values greater than 5.98 and FiO 2 less than 

.59 at 8 h after HFNC treatment was associated with a lower 

isk of intubation in ARF patients [21] . However, the lack of early 

nd accurate predictive instrument is so far the clinical challenge 

 22 , 23 ]. In our previous work, it was verified that the mROX index

24] , which uses PaO 2 instead of SpO 2 to directly respond to oxy- 

en status, could increase sensitivity slightly at 2h. The same find- 

ng was obtained by Chen et al. in a more recent study, in which 

he index of Vox, which used Vt instead of RR to indicate respira- 

ory drive, was reported [25] . However, these parameters require 

nvasive blood collection or non-invasive ventilation equipment. 

e attempted to explore the potential of prediction by EIT to mon- 

tor ventilation distributions 1h after HFNC initiation, yet we found 

hat EIT-based spatial and temporal ventilation distribution indexes 

ad slightly and insignificant difference between groups of HFNC 

uccess and failure. Notablely, in the present study, it is found that 

he most important six EIT predictor variables selected by feature 

eight for HFNC prediction were all at before (T1) and 30 min (T2) 

fter HFNC initiation. These predictors showed high sensitivity and 

pecificity in the machine learning algorithms. These results were 

onsistent with clinical practice that respiratory and oxygen would 

hange a few minutes after the adjustment of respiratory strategies 

 26 , 27 ]. Besides, previous studies have demonstrated that HFNC re- 

ults in ventilation redistribution within a brief period [ 3 , 11 ]. Con-

equently, machine learning models are capable of capturing com- 

lex features based on multidimensional clinical EIT information 

uring HFNC, and possess the potential to predict outcomes at 

0min after HFNC initiation with considerable accuracy. 

For the features selected by machine learning, � EELI related 

redictors EELI_T2-T1_ROI4 contributed the most proportion to the 

eature important weight ( Fig. 2 ), followed by TIV related pre- 

ictors TIV_T1_ROI1 and TIV_T2_ROI2, and RVD related predictors 

VD_T1_ROI3 and RVD_T1_ROI2. � EELI is associated with changes 

n end-expiratory lung volume. Mauri et al . found that � EELI in- 

reased with an increasing flow rate during HFNC [28] . This may 

e the main pathophysiological benefits of HFNC therapy for ARF 

atients combined with ARDS, which is the main etiology for the 

atients in the original study population. � EELI was not compa- 

able among patients treated by conventional methods because 

he impedance monitored by EIT was not normalized to volume. 

e presumed that the EELI_T2-T1_ROI4 highlighted the recruit- 

ent of collapsed alveolar in the most dependent regions. TIV 
for the balanced data set. 

ll Specificity PPV NPV 

 30.00 56.25 75.00 

 70.00 70.00 70.00 

 50.00 58.33 62.50 

 60.00 66.67 75.00 

 50.00 61.54 71.43 

 80.00 80.00 88.89 

 60.00 63.64 75.00 

 100.00 100.00 83.33 

 100.00 100.00 76.92 

 10.00 47.06 50.00 

0 30.00 56.25 100.00 

 90.00 83.33 69.23 
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Fig. 5. The performance of xgboost method after SMOTE balancing: (a) ROC curve and (b) Confusion matrix. 
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t T1 and T2 were also important in predicting the outcome. 

IV is related to tidal volume and could represent the respiratory 

rive during spontentous breath [ 29 , 30 ]. A previous study has in-

icated that EIT can help to identify the overdistension caused by 

FNC [11] . The reduction of respiratory drive is a major benefit of 

FNC therapy for ARF patients. When the respiratory drive of pa- 

ients was too high, the high-flow rate might induce overdisten- 

ion of not-dependent region [31] . We believed that TIV_T1_ROI1 

nd TIV_T2_ROI2 were the indicators recognized by machine learn- 

ng for respiratory drive. In addition, RVD at T1 and T2 were the 

hird relevant parameter. RVD was initially evaluated during low- 

ow maneuver [32] and could be unstable when the inspiration 

ime is short [18] . Therefore RVD might not be suitable for eval- 

ation of ventilatory status in ARF. Different from the previous 

tudy, the machine learning methods in this study demonstrated 

VD_T1_ROI3 and RVD_T1_ROI2 as two high weighed features for 

FNC outcome. The method of machine learning is helpful to fa- 

ilitate the exploration of the internal relationship among param- 

ters on the basis of prior knowledge. In practice, it is necessary 

o select appropriate modeling methods and parameters for the 

pplication scenario. For example, the overall performance of the 

GBoost model is relatively balanced in test. However, wrong pre- 

icting of actual HFNC treatment failure will be more fatal in clinic. 

herefore, it is generally more inclined to choose models with bet- 

er specificity and NPV performance. The manuscript was focused 

n the feasibility of EIT for predicting HFNC outcomes, and further 

esearch will pay more attention to the implementation of the pro- 

osed approach. 

In the current study, the data were quite imbalanced between 

he two classes (HFNC success vs. HFNC failure) with a ratio of ap- 

roximately 3:1. The specificity performance of the machine learn- 

ng methods was poor with the imbalanced data set. Meanwhile, 

he specificity performance of these prediction methods improved 

ignificantly after the data balancing process, and several methods 

such as xgboost) had a considerable improvement, indicating that 

t was necessary to perform prediction with the balancing method. 

ith data balancing techniques, severely imbalanced classes could 

e effectively avoided, which is crucial for an accurate forecast. 

owever, accuracy and recall significantly reduced after the data 

alancing process. The reasons are as follows. First, sensitivity and 

pecificity are two major statistical indicators to evaluate the clas- 

ification model. Increasing sensitivity tends to reduce specificity 

nd vice versa in general. A low specificity will indicate false pos- 
7 
tive patients in the clinic, which will delay the intubation time, 

ffect the course of treatment and the prognosis, and even lead to 

he premature death of patients.On the other hand, a low sensitiv- 

ty means too many false negative cases, which will waste medi- 

al resources and cause unnecessary panic and anxiety. Second, a 

mall number of samples were used in the study, leading to sensi- 

ive test results, which demonstrates that the performance of ma- 

hine learning methods largely depends on robustness and dimen- 

ional adaptability. For example, GBDT algorithm is suitable for low 

imensional data modeling and has strong data compatibility, and 

n this study the algorithm showed quite favourable performance, 

specially specificity. Xgboost also showed excellent performance 

n the SMOTE-balanced data set in our study due to its high scala- 

ility and robustness as well as its advantage of over-fitting reduc- 

ion. 

There are several limitations in this study. The outcome vari- 

bles in our study were selected by the investigators based on 

linical practice, which might bring in subjective bias. In addi- 

ion, owing to limited data availability, the population included in 

ur study was not large enough. Only 43 samples were obtained 

ecause of measurement difficulty. Furthermore, with the devel- 

pment of data balancing techniques, a variety of methods are 

merging and we only discussed the SMOTE-balanced method in 

his study. Limited by the number of samples, we selected only 

ix predictors for the HFNC prediction model. In future studies, we 

ill increase the sample size and select more different hospitals as 

he validation set to improve the generalizability of the study. 

. Conclusion 

The xgboost method showed the best overall performance for 

alanced EIT image features in our test. It could also support par- 

llelization technology and reduce the risk of over-fitting, which 

ay be a potential machine learning method for early prediction 

f HFNC outcomes. In further research, we will increase the num- 

er of samples, integrate EIT and other related clinical indexes to 

stablish an auxiliary decision-making tool that can be applied to 

arly prediction of HNFC. 

tatements of ethical approval 

The study was approved by the ethics committees of Renji Hos- 

ital, School of Medicine, Shanghai JiaoTong University (KY2021- 



L. Yang, Z. Li, M. Dai et al. Computer Methods and Programs in Biomedicine 238 (2023) 107613 

0

o

D

f

D

C

i

m

F

r

G

&

A

S

2

o

1

57-B). Written informed consent was obtained from all patients 

r their legal representatives prior to the study. 

ata availability 

The data that support the findings of this study are available 

rom the corresponding author upon reasonable request. 

eclaration of Competing Interest 

None. 

RediT authorship contribution statement 

Lin Yang: Visualization, Data curation, Formal analysis, Writ- 

ng – review & editing. Zhe Li: Visualization, Data curation, For- 
Appendix 1 

Parameter settings for the tested methods. 

Method Hyperparemter 

KNN weights:strategy of neighbor weight evaluation 

algorithm for calculating nearest neighbor 

evaluation strategy of nearest neighbor distance 

n_estimators 

SVM kernel function 

coefficient of kernel function 

residual convergence condition 

maximum_iterations 

Logistic selection of regularization term 

optimization algorithm for selection parameters 

residual convergence condition 

regularization degree 

maximum_iterations 

Random Forest max_depth:maximum depth of the tree 

n_estimators:number of trees in random forest 

criterion: attribute calculation strategy 

min_samples_split 

min_samples_leaf 

min_weight_fraction_leaf 

max_leaf_nodes 

min_impurity_decrease 

GBDT measurement method of loss function 

learning_rate 

n_estimators 

subsample 

criterion:strategy of sample set segmentation 

min_samples_split 

min_samples_leaf 

min_weight_fraction_leaf 

max_depth 

AdaBoost base_estimator 

n_estimators: number of base classifier cycles 

learning_rate 

criteria of model promotion 

GaussianNB priors: value of priori probability 

BernoulliNB alpha: smoothing factor 

binarize: threshold of sample feature binarization 

fit_prior: learn the prior probability of the class or not 

class_prior 

ANN hidden_layer_num 

feedforwardnet 

activation 

solver 

alpha:parameter of regularization item 

learning_rate 

maximum_iterations 

tol 

trainFcn 

Xgboost learning_rate 

n_estimator 

8 
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eng Fu: Visualization, Data curation, Formal analysis, Writing –
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ao: Data curation. Zhanqi Zhao: Data curation, Writing – review 
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Value 

uniform: weight of points in each neighborhood is the same 

auto:select the most appropriate algorithm based on the samples 

euclidean_distance 

5(initialize value) 

RBF 

1/6 

1e-4 

unlimited 

L2 regularization 

Based on liblinear library, coordinate axis descent method is 

used as iteratively optimize loss function 

1e-4 

1.0 

100 

Each leaf node has only one category 

8(initialize value) 

gini 

2 

1 

0.0 

unlimited 

0.0 

deviance 

1e-1 

100 

boost on full data set by decision tree 

friedman_mse 

2 

1 

0.0 

3 

decision tree 

50 

1e-1 

SAMME.R 

calculate priori probability according to samples by maximum 

likelihood method 

1.0 

0.0 

true 

generate class prior probability from samples 

1 

3(initialize value) 

relu 

lbfgs, optimizer based on Quasi-Newton method 

1e-4 

The initial learning_ rate is 1e-2. When the training loss cannot 

be reduced for two consecutive times or the verification score 

stops rising at least tol, divides the current learning rate by 5 

200 

1e-4 

levenberg-marquardt 

0.1 

10 

( continued on next page ) 
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Appendix 1 ( continued ) 

Method Hyperparemter Value 

max_depth 6 

min_child_weight 1 

gama 0 

subsample 1 

colsample_btree 0.8 

scale_pos_weight 1 

max_delta_step 0 

alpha:weight of L1 regularization term 0 

Ensemble base_estimator decision tree 

modeling method boost 

n_estimators:number of training base estimators 10 

max_samples:percentage of samples trained for each base 

estimator 

0.4 

max_features:the number of features extracted from the sample 

for training each base estimator 

1.0 

bootstrap true 

Discriminant solver svd 

shrinkage auto, automatic scaling by the Ledoit Wolf lemma 

priors generate class prior probability from samples 

n_components 1 

tol 1.0e-4 

R
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