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J. Rupitsch2, Knut Moeller1

1 Institute of Technical Medicine (ITeM), Furtwangen University, Villingen-Schwenningen, Germany,

2 Faculty of Engineering, University of Freiburg, Freiburg, Germany, 3 Department of Anaesthesiology and

Intensive Therapy, Kiskunhalas Semmelweis Hospital, Kiskunhalas, Hungary, 4 Department of Control

Engineering and Information Technology, Faculty of Electrical Engineering and Informatics, Budapest

University of Technology and Economics, Budapest, Hungary

* rongqing.chen@hs-furtwangen.de

Abstract

Structural prior information can improve electrical impedance tomography (EIT) reconstruc-

tion. In this contribution, we introduce a discrete cosine transformation-based (DCT-based)

EIT reconstruction algorithm to demonstrate a way to incorporate the structural prior with

the EIT reconstruction process. Structural prior information is obtained from other available

imaging methods, e.g., thorax-CT. The DCT-based approach creates a functional EIT

image of regional lung ventilation while preserving the introduced structural information.

This leads to an easier interpretation in clinical settings while maintaining the advantages of

EIT in terms of bedside monitoring during mechanical ventilation. Structural priors intro-

duced in the DCT-based approach are of two categories in terms of different levels of infor-

mation included: a contour prior only differentiates lung and non-lung region, while a detail

prior includes information, such as atelectasis, within the lung area. To demonstrate the

increased interpretability of the EIT image through structural prior in the DCT-based

approach, the DCT-based reconstructions were compared with reconstructions from a

widely applied one-step Gauss-Newton solver with background prior and from the advanced

GREIT algorithm. The comparisons were conducted both on simulation data and retrospec-

tive patient data. In the simulation, we used two sets of forward models to simulate different

lung conditions. A contour prior and a detail prior were derived from simulation ground truth.

With these two structural priors, the reconstructions from the DCT-based approach were

compared with the reconstructions from both the one-step Gauss-Newton solver and the

GREIT. The difference between the reconstructions and the simulation ground truth is calcu-

lated by the ℓ2-norm image difference. In retrospective patient data analysis, datasets from

six lung disease patients were included. For each patient, a detail prior was derived from the

patient’s CT, respectively. The detail prior was used for the reconstructions using the DCT-

based approach, which was compared with the reconstructions from the GREIT. The recon-

structions from the DCT-based approach are more comprehensive and interpretable in

terms of preserving the structure specified by the priors, both in simulation and retrospective
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patient data analysis. In simulation analysis, the ℓ2-norm image difference of the DCT-based

approach with a contour prior decreased on average by 34% from GREIT and 49% from the

Gauss-Newton solver with background prior; for reconstructions of the DCT-based

approach with detail prior, on average the ℓ2-norm image difference is 53% less than GREIT

and 63% less than the reconstruction with background prior. In retrospective patient data

analysis, the reconstructions from both the DCT-based approach and GREIT can indicate

the current patient status, but the DCT-based approach yields more interpretable results.

However, it is worth noting that the preserved structure in the DCT-based approach is

derived from another imaging method, not from the EIT measurement. If the structural prior

is outdated or wrong, the result might be misleadingly interpreted, which induces false clini-

cal conclusions. Further research in terms of evaluating the validity of the structural prior

and detecting the outdated prior is necessary.

Introduction

Electrical Impedance Tomography (EIT) is a functional radiation-free imaging technique,

which measures regional lung ventilation and aeration distribution. Electrodes that are placed

equidistantly between the 4th and the 5th intercostal space around the chest, are used to stimu-

late with a weak alternating electric current and to measure induced changes in electrical poten-

tials at the skin surface of the chest during breathing. A typical EIT scan delivers 20-50 images

per second [1–4]. It thus shows a higher time resolution but lower spatial resolution (usually 2-

3cm) than other common imaging methods such as computed tomography (CT) and magnetic

resonance imaging (MRI) [5–7]. In addition, the cost of EIT is considerably lower compared to

other functional imaging methods like single photon emission computed tomography (SPECT)

or positron emission tomography (PET) [8–10]. As a modern diagnosis and monitoring tool,

EIT has shown the potential to guide mechanical ventilation [11–13]. It helps to identify over-

distention of the anterior part or intratidal recruitment in the dependent part, which is evalu-

ated by clinicians to optimize positive end-expiratory pressure (PEEP) [14, 15]. Eventually, this

will lower the risk of ventilator induced lung injury (VILI) [14, 16, 17]. EIT is also applicable in

adult patients with ARDS [18, 19], chronical obstructive pulmonary disease (COPD) [20, 21],

or cystic fibrosis [22]. Recently, the optimal settings of mechanical ventilation therapy has

attracted much attention due to the increasing cases of COVID-19 infections of which 5-15%

require intensive care surveillance and mechanical ventilation support [23, 24].

In practice, though, EIT images are difficult to interpret and results may depend on the

reconstruction method employed [25–27]. There have been several advancements in the devel-

opment of EIT algorithms, each with its own unique advantages. Many of these methods have

been specifically designed for certain purposes, such as compensating for motion artifacts [28],

or faulty electrodes [29], 3D imaging [30], noise reduction through temporal correlation [31],

and utilizing Kalman filter approaches for tracking fast changes in conductivity distribution

[32]. The D-bar algorithm has been developed for absolute EIT imaging [33]. The GREIT is

based on expert-defined figures of merit [34]. The orthonormal eigenimages from CT data are

used as training sets [35]. Approaches with the level set method [36], or Total Variation regu-

larization [37], are used to prevent blurring of reconstructed images. With the constantly

increasing computational power and parallel computing capabilities, there is a rise in learning-

based inverse solvers for EIT, such as the EIT image reconstruction based on structure-aware

sparse Bayesian learning [38, 39]. The algorithms utilizing Deep Neural Networks, e.g., deep
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D-bar algorithm [40], have been reported to enable real-time reconstruction of absolute EIT

images.

Despite these advancements, low spatial resolution combined with blurred anatomical

alignment and reconstruction-induced artifacts still hinder the interpretation of patient status

in clinical settings. Incorporating structural priors, such as a lung contour, into the EIT image

reconstruction process can improve anatomic orientation and benefit clinicians [25]. Struc-

tural priors can be included in the reconstruction in different ways, for example, it can be

included as uniformed weighting [34], as modified inverse FEM model [41], or in form of dif-

ferent kernel functions [42] or altogether.

Previously, a novel EIT reconstruction algorithm was proposed using the discrete cosine

transformation (DCT) and structural priors obtained from CT data to improve the interpret-

ability of EIT images [43]. It creates a patient specific anatomically oriented EIT reconstruc-

tion, which offers a natural way to preserve the original conductivity distribution, while

improving image quality and readability. In addition, this algorithm provides a scalable

dimensionality of the EIT reconstruction problem. By reducing the degree of freedom of the

Jacobian matrix, this algorithm improves the real-time performance of EIT [43].

However, it only has a simple inclusion of a lung contour from CT as a structural prior in

the reconstruction process. Additional information from CT, e.g., atelectasis area, which can

also function as structural priors, are missing. As a lung contour only differentiates lung region

and non-lung region, pathological details can be introduced as weights to enhance or to atten-

uate the impedance changes during the reconstruction process. The effect of these two differ-

ent types of structural priors, which are called contour prior and detail prior, is not yet

demonstrated on the reconstruction of the DCT-based approach. In addition, the DCT-based

approach was not compared to other existing robust algorithms for reconstruction. Graz con-

sensus Reconstruction algorithm for EIT (GREIT), for example, is an advanced and commonly

used algorithm [27, 30, 44]. The one-step Gauss-Newton method also represents a broad

group of structurally similar algorithms for image reconstruction, which have been widely

applied in EIT [34, 45]. Thus, it is necessary to compare the reconstruction of the DCT-based

approach with the reconstruction from both GREIT algorithm and one-step Gauss-Newton

method. The objective of this work is to demonstrate the increased interpretability of the EIT

images through structural priors integrated into the DCT-based reconstruction approach; and

to evaluate the effect of different structural prior knowledge, which in the following is called

DCT priors, inserted into the EIT reconstruction process. For the evaluation, we used simula-

tions and retrospective patient data.

Methods

EIT image reconstruction

The reconstruction of an EIT image is ill-posed, which means there is no unique solution,

therefore an optimization with regularization is needed to enforce unique estimates of the con-

ductivity distribution σ from the boundary voltages v [46, 47]. In addition, the variation of the

conductivity distribution x = σ − σbaseline and the induced changes of the boundary voltages y =

v − vbaseline are nonlinearly related [48]. The actual conductivity distribution can be inhomoge-

neous and nonlinear, thus, a finite element model (FEM) is commonly used to discretize the

domain into piecewise constant regions [49].

The EIT inverse problem is ill-posed, i.e., regularization is required to constrain the solu-

tion space. It can be expressed in terms of a non-linear optimization problem:

x̂ ¼ argmin
x

fkFðxÞ � yk2

2
þ l

2
kRxk

2

2
g ð1Þ
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where x̂ represents the reconstructed conductivity change, F(x) is the nonlinear model that

maps the conductivity change in a model to the measured boundary voltage variation, y repre-

sents the measured boundary voltage changes, λ is a hyperparameter to control the influence

of regularization on obtained solution [50]. If only small internal changes of the conductivity

are assumed, a linear mapping F(x)� Jx can be estimated:

y � Jxþ n ð2Þ

where n represents an additive noise matrix superimposed on the boundary measurements.

The matrix J is a Jacobian matrix, of which Ji,j maps a conductivity change at the FEM element

j to an induced voltage change in the boundary position i at a baseline point:

Ji;j ¼
@yi
@xj
j
sbaseline ð3Þ

With the previous assumption that the conductivity change is small, the Eq 1 is linearized:

x̂ ¼ argmin
x

fkJx � yk
2

2
þ l

2
kRxk

2

2
g ð4Þ

where R is a regularization penalty to reconstruct the impedance distribution. R can be

regarded as a traditional way to introduce a penalty to the ill-posed inverse problem to form a

more well-posed problem. R can be selected from various choices, for example from Tikhonov

prior [51], NOSER prior [52], or Laplace prior [53]. In this work, the Tikhonov prior R = I was

chosen. The hyperparameter λ is optimized to reach a noise figure of 0.5 (NF = 0.5) as recom-

mended [34]. The conductivity distribution estimation of the x̂ can then be calculated in a

closed form:

x̂ ¼ ðJTJþ l2RTRÞ� 1JTy ¼ By ð5Þ

B is the reconstruction matrix which calculates the impedance distribution variation from

the measured boundary voltages.

Prior information in EIT

Apart from the introduction of a regularization penalty R, other options exist to include priors

into EIT reconstruction, for example, anatomical structure can be introduced as a prior via the

Jacobian matrix J. The calculation of Jacobian matrix J depends on the σbaseline as a lineariza-

tion point. Since the initial conductivity distribution is not known, it is common to assume a

homogeneous conductivity distribution of σbaseline = 1, which may cause some reconstruction

errors [54, 55]. To avoid errors caused by the assumption of an invalid homogeneous prior,

Grychtol et al. suggested that the setting of the σbaseline could consider the conductivity distri-

bution from the CT or MRI data of the specific patient to improve the image quality [55]. This

method usually leads to clusters of FEM elements, which are topological neighbours and

belong to the same grey values in the respective CT or MRI morphological image. For recon-

struction, cluster elements are assigned the same property values. In our research, the lineari-

zation point σbaseline was set as sbaseline
lung ¼ 0:5 and sbaseline

non� lung ¼ 1 to form a better prior separating

between lung and background in the calculation of the Jacobian matrix J. This method was

used to exemplify a typical approach to implement a lung contour prior into the EIT recon-

struction process. Fig 1 illustrates the different assumptions of the linearization point σbaseline

to calculate the final Jacobian matrix J.

In addition to FEM element clustering, priors can be integrated into a subset of basic func-

tions, e.g., the basis constraint method [50]. Thus, the matrix J is modified to the
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reconstruction matrix Jnmeas�nsubset
subset ¼ Jnmeas�nelemsSnelems�nsubset (Fig 1). nmeas is the number of bound-

ary measurements in EIT reconstruction, nelems is the number of elements in the FEM model,

and nsubset is the number of basic functions in the modified subsets, or the dimensionality of

the subsets. If the dimensionality of the subsets is small compared to nelems (nsubset� nelems),

the degrees of freedom of the inverse problem will be reduced to the number of the subset

groups, and thus ill-posed characteristic of the optimization problem can be controlled. Suit-

able kernel functions can be chosen for such subsets. An efficient reverse transform must exist

for the kernel functions to recover an image. The original Jacobian matrix J maps conductivity

changes within the FEM elements to induced voltage changes at the boundary. The subset

modified Jacobian matrix Jsubset maps the changes of the subsets within grouped FEM elements

to the induced voltage changes and, thus, integrates kernel functions into standard reconstruc-

tion. A final EIT reconstruction is restored from the estimated change of the subsets. Any

image compression algorithm is principally an appropriate candidate method to generate sub-

sets, e.g., discrete cosine transformation (DCT) or wavelet transformation or others.

DCT based EIT reconstruction

In our research, the basic cosine functions from DCT are used to generate the modifying sub-

sets. The solution of the inverse problem with the modified Jacobian matrix JDCT is repre-

sented by the change of the DCT coefficients. DCT is a prominent and widely used method in

image processing, e.g., in JPEG image compression [56]. The concept of DCT is to represent

the image with a sum of cosine functions of varying frequencies, nxDCT in x-direction and

nyDCT in y-direction respectively. Those add up to the total DCT order nDCT = nxDCT � nyDCT.

For a two-dimensional image A with M rows and N columns, the DCT process is described as:

Vp;q ¼ apaq

XM� 1

m¼0

XN� 1

n¼0

Am;n � cos
ð2mþ 1Þpp

2M
� cos
ð2nþ 1Þqp

2N
ð6Þ

Fig 1. Calculation of the Jacobian matrix from different assumptions of the linearization point and the modification of the Jacobian matrix by a

subset.

https://doi.org/10.1371/journal.pone.0285619.g001
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where

ap ¼

1
ffiffiffiffiffi
M
p p ¼ 0

ffiffiffiffiffi
2

M

r

1 � p � M � 1

8
>>><

>>>:

and

aq ¼

1
ffiffiffiffi
N
p q ¼ 0

ffiffiffiffi
2

N

r

1 � q � N � 1

8
>>><

>>>:

The matrix V consists of the DCT coefficients, of which a subset can roughly recover a com-

pressed image ~A of A:

~Am;n ¼
XM� 1

p¼0

XN� 1

q¼0

apaq
~Vm;n � cos

ð2mþ 1Þpp
2M

� cos
ð2nþ 1Þqp

2N ð7Þ

where ~V is a sparse matrix of the same size as V but only having several non-zero elements

from V.

The sparse matrix ~V is of DCT order nDCT. In our contribution, the DCT order was set to

nDCT = 225, which is composed of 15 frequencies in both x-direction and y-direction (p, q 2
(0, 1, . . ., 14)). p represents DCT frequencies in x-direction, and q in y-direction. The choice of

DCT order nDCT depends on the distribution of frequencies derived from image A. Empirical

tests on our data revealed that information beyond 15 frequencies in both x-direction and y-

direction is negligible in our application.

The different frequencies combinations p, q of the basic cosine functions from sparse ~V can

be written as a matrix D(p, q):

Dðp; qÞ ¼ apaq � cos
ð2mþ 1Þpp

2M
� cos
ð2nþ 1Þqp

2N
ðp; q 2 ð0; 1; . . . ; 14ÞÞ ð8Þ

It is worth noting that D(p, q)m,n does not include the image information, i.e., pixel value

Am,n, but just the basic cosine functions. With the aim to restrict reconstruction to the lung

area, C 2 RM�N�nDCT was generated to include the structural prior:

Cðp; qÞm;n ¼ Pm;n � Dðp; qÞm;n ð9Þ

of which matrix P is the structural prior derived from a morphological image, such as a CT

image ACT. For this presentation, we classify structural priors in the DCT-based approach into

two groups. A structural prior P can be binary and limits the reconstruction to the lung area,

but does not include further anatomical structures or pathophysiological changes within the

lung area. This prior is called a contour prior (cf. Fig 3) and denoted as Pcp:

Pcp
m;n ¼

1 elements within lung

0 elements outside lung

(

A structural prior P may include anatomical or pathophysiological details derived from

morphological images, e.g., using the atelectasis area shown in CT to constrain the impedance
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change within the same area in the EIT reconstruction (cf. Fig 3). This type of structural prior

is called detail prior Pdp, whose element values vary between 0 and 1 (0 � Pdp
m;n � 1). In our

work, we used Hounsfield units of CT image ACT, but any other reasonable assignment is pos-

sible too. Pure air is -1,000 Hounsfield units, normal lung tissue is -700 Hounsfield units (70%

air, 30% tissue), while Hounsfield units for atelectasis, edema, and infiltrates are close to 0 [57].

Thus, the detail prior derived from ACT is calculated as:

Pdp
m;n ¼

ACT
m;n

� 1000
elements within lung

0 elements outside lung

8
<

:

These different priors will lead to different levels of constraints within the reconstructions.

In general, it is possible to include any appropriate information that can be obtained, e.g.,

from an image source mapped to a matrix of appropriate dimension (M × N) and then intro-

duced into EIT reconstruction. The elements from the most ventilated area are set to 1, and

the elements from the not ventilated area are set to 0. Other elements within lung region are

scaled between 0 to 1. Structural priors from different morphological images may introduce

same structural constrains to the EIT reconstruction (like a lung contour). The choice of

modality is based on the availability and applicability.

An example of matrix C is illustrated in Fig 2a. Four different frequencies combinations are

depicted. Please note that in Fig 2a, the projection P onto the lung area is already included.

From C(p, q), each column Kj of K is created as follows:

Kj ¼ TðCðp; qÞÞ ð10Þ

where T is a map to assign every pixel in C(p, q) to the element in the FEM model, which cov-

ers the pixel. j is the column index of the matrix K. It is calculated as

jðp; qÞ ¼ q �
ffiffiffiffiffiffiffiffiffiffi
NDCT
p

þ pþ 1, e.g., p = 2, q = 0 i.e. K3 = T(C(2, 0)). Each column Kj can be

derived by the linear mapping T that assigns frequency dependent matrix C(p, q) (p, q 2 (0, 1,

. . ., 14)) to the FEM elements. Four different columns of matrix K, namely K3, K82, K145 and

K222, are illustrated in Fig 2b. The number of pixels in the lung area of the matrix C(p, q) can

be larger than the number of FEM elements. Thus, it is possible that not all elements of C(p, q)

are used, but the columns of K are still linearly independent. In other words, K is a valid basis

Fig 2. Left: An example of C with four different frequencies combinations p, q. Right: Visualization of the corresponding column of K

with the FEM model: upper (left to right): K3, K82; lower (left to right): K145, K222.

https://doi.org/10.1371/journal.pone.0285619.g002
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of the selected low frequency subspace of the DCT representation, containing only masked

patterns of basis cosine functions. Multiplying the Jacobian to obtain JDCT with K establishes

the mapping from the DCT parameters x̂DCT to the boundary measurements y.

After calculation of the subset matrix K, the implementation of the reconstruction matrix B

is based on the subset modified reduced Jacobian Jsubset = J � S. In the DCT-based reconstruc-

tion, the modifying subset is the DCT generated subset matrix Knelems�nDCT . Multiplying the

Jacobian matrix Jnmeas�nelems by the matrix Knelems�nDCT allows the infusion of the structural prior

into the EIT reconstruction process. As a result, the final Jacobian matrix JDCT contains only

nmeas × nDCT elements, which are significantly fewer than the number of elements in a FEM

used in the classical EIT reconstruction [43]. This new Jacobian matrix JDCT can be used like

the former Jacobian in the inverse process:

x̂DCT ¼ ðJ
T
DCTJDCT þ l

2RTRÞ� 1JTDCTy ¼ BDCTy ð11Þ

where the reconstruction matrix BDCT maps the voltage variations to the change of DCT coef-

ficients x̂DCT 2 R
nDCT . Throughout this contribution, the Tikhonov prior R is used for regulari-

zation. Thus, in Eq 11, R = I with the hyperparameter λ being optimized to reach a noise

figure of 0.5.

The change of DCT coefficients x̂DCT, which is the result of the reconstruction is used for

the restoration of an EIT image H. With the matrix C(p, q) multiplied by the corresponding

reconstructed x̂DCT;j and summed element by element, an image H can be recovered. The

image H has the same resolution as the original CT image (A) with M rows and N columns.

H ¼
XnxDCT

p¼0

XnyDCT

q¼0

Cðp; qÞ � x̂DCT;j ð12Þ

where the j of the x̂DCT;j is a function of the DCT frequencies as j(p, q) in the Eq 10. The

restored image H consists of the prior structural information that was derived from the origi-

nal CT image A. The entire procedure of the DCT-based EIT algorithm is depicted in Fig 3.

Fig 3. Procedure of the DCT-based EIT algorithm.

https://doi.org/10.1371/journal.pone.0285619.g003
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Evaluation of the DCT-based approach

In the simulation assessment, we used two sets of forward models to simulate different lung

conditions. Boundary voltages were generated, and then served as measurements in the EIT

reconstruction process. The simulation ground truth is the best possible source of prior that

can be used in the reconstruction. A contour prior and a detail prior were derived from simu-

lation ground truth. With these two structural priors, the reconstructions from the DCT-based

approach were compared with the reconstructions from both one-step Gauss-Newton solver

and GREIT.

In the retrospective data analysis, six patient datasets were used (details in Table 1), includ-

ing a long-term seven-day monitoring. CT images from the patients are used to generate detail

priors for the DCT-based approach. The reconstructions from the DCT-based approach were

compared with the GREIT reconstructions. The CT derived thorax shape was used in both

algorithms.

Simulation data. To generate the simulated boundary voltages required for the evaluation

of different EIT reconstruction methods, we used Matlab R2019b (Mathworks, Natick, MA)

and the EIDORS toolbox [58], in which NETGEN [9, 59] was adopted to generate the finite

element meshes (FEM). The thorax and lung contour in the simulated two-dimensional model

with 122,306 generated FEM elements were derived from the CT image. Both the CT image

and the derived FEM model are depicted in Fig 4. We implemented the adjacent stimulation

pattern and adjacent voltage measurement pattern, which is often found in commercial EIT

equipment. Initially, the conductivity of the elements within the lung area were set to σ = 0.5,

and the rest of the elements are set to σ = 1. The boundary voltages corresponding to this initial

setting were stored as Vbaseline, which was used as a reference frame in the image reconstruc-

tion. After the change of simulation settings, boundary voltage changes V were generated.

Normalized voltage changes y ¼ V� Vbaseline

Vbaseline were used for subsequent reconstruction process. To

mimic a more realistic measurement situation, 25% of Gaussian noise scaled to the standard

deviation of v-vbaseline was superimposed to the boundary voltage measurements v.

In the first part of simulation validation, five different and rather artificial patterns of con-

ductivity distributions within the lung area were implemented (Fig 5, first column, shown as

normalized pixel value) to generate the required “measurement” data for the reconstruction

process:

a. Homogeneous conductivity distribution of the complete lung area with σ = 0.25. With

this uniform distribution all artefacts introduced by the reconstruction method can be

identified;

b. Gradient decreasing conductivity distribution with σ = 1 at ventral lung area. This pattern

is similar to gravitational gradient (hydrostatic pressure gradient) induced lung

properties;

Table 1. Patient characteristics.

Patient Symptoms Type of Breathing EIT Monitoring Device

A Pneumonia 10-25 cmH2O PEEP step PulmoVista500

B Pneumonia 10-25 cmH2O PEEP step PulmoVista500

C Pneumonia 0-15 cmH2O PEEP step Goe-MF II

D COPD Spontaneous tidal breathing PulmoVista500

E COPD, Lung emphysema Spontaneous tidal breathing PulmoVista500

F Pneumonia 0-15 cmH2O PEEP step Goe-MF II

https://doi.org/10.1371/journal.pone.0285619.t001
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Fig 4. First row: The original CT image. Second row: The derived FEM model with 25% atelectasis area at the dorsal part.

https://doi.org/10.1371/journal.pone.0285619.g004
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c. Gradient decreasing conductivity distribution with σ = 1 in the centre of lung;

d. Four high contrast areas in the ventral and dorsal lung with σ1 = 0 and σ2 = 1, other parts

of the lung remain unchanged. High contrast areas reveal the ability of a reconstruction

method (e.g. its regularization) to reconstruct rapid changes in conductivity;

e. Chess-board pattern of conductivity distribution with σ1 = 0 and σ2 = 1. A rather artificial

pattern, which provides information about the resolution that is supported by the recon-

struction method.

All the simulated conductivity distributions within a lung area are special cases in a condi-

tion to evaluate the algorithm in a clearly defined situation. It does not intend to mimic exact

lung physiology or pathology. The conductivity is given in arbitrary units (AU).

The second part of simulation involves a lung model with different states of atelectasis,

from 0% to 50%, in the dorsal part of the lung. This simulation shed some light on more realis-

tic lung conditions. The same forward model derived from a patient dataset used in the first

part of the simulation is used. One example with 25% atelectasis on the dorsal part is depicted

in Fig 4. The dark grey dorsal part of the lung indicates the atelectatic portion.

Fig 5. First column: Patterns of the conductivity distribution (normalized) implemented in the simulation for the measurement of the boundary

voltage. The second to fifth column: Reconstructions of different algorithms, GREIT, background reconstruction with one step Gauss-Newton solver,

DCT-based EIT approach with contour prior and DCT-based EIT approach with detail prior, respectively. All pixel values in images are normalized.

https://doi.org/10.1371/journal.pone.0285619.g005
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For the DCT-based reconstruction process, EIT measurement y and structural priors from

morphological images, e.g., CT, will be used. The setup of the simulation is to create an ideal

situation: the real status of the lungs (the simulation ground truth) is known. Thus, the simula-

tion ground truth is an ideal structural prior. The ground truth derived lung shape was used as

a contour prior, and the ground truth derived weights were used as a detail prior. The simula-

tion setting tries to describe the benefits of an accurate structural prior to the EIT reconstruc-

tion. Another FEM model with same thorax shape but different and coarse FEM meshes is

used in order to avoid the ‘inverse crime’ [60].

To compare the difference between the reconstructed image and the ground truth, we cal-

cualted the pixel wise ℓ2-norm of the image differences:

‘2 norm of image difference ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i¼1

XN

j¼1

ðHRecon
ij � HGT

ij Þ
2

v
u
u
t ð13Þ

where the HRecon is the EIT reconstruction, HGT represents the simulation ground truth, ij is

the index of each pixel. A lung mask P is used in the DCT-based algorithms to constrain the

reconstruction within the lung area. To allow for a fair comparison in addition to the results

from pure GREIT and one-step Gauss-Newton solver, reconstructed images with same lung

mask P applied to both methods are calculated. Furthermore, EIT reconstruction shows the

pixel value in arbitrary unit (AU), and different EIT algorithms yield different pixel value. To

achieve comparable results, the reconstructions generated by the different algorithms were

normalized to pixel values between [0, 1].

Patient data. Retrospective clinical datasets obtained from six patients (2 females, 4

males, 70yrs±5) were included (details in Table 1). The study was approved by the Human

Investigation Review Board University of Szeged (approval number 67/2020-SZTE). Written

informed consent was obtained from the patients or their legal representatives, the methods

were carried out in accordance with the approved guidelines and regulations. Four patients

were deep sedated, intubated and ventilated with a PEEP step maneuver performed, the other

two patients were spontaneously breathing. A survey of patient characteristics is found in

Table 1. Patient A was monitored for seven days, which allowed day by day comparison. All

datasets are recorded either by the Dräger PulmoVista 500 device (Dräger, Lübeck, Germany)

or by the Goe-MF II device (Viasys Healthcare, Höchberg, Germany). CT data of each patient

were obtained at the first day of admission into the hospital. The CT image on the plane where

the EIT belt was attached were used to determine the thorax contour for FEM. The details of

the lung from the CT were used to generate the detail prior.

For the day-by-day evaluation using the data from patient A, reconstructions from the

DCT-based approach were compared with that of GREIT. In addition, global inhomogeneity

(GI) indices [61] calculated from DCT-based approach reconstructions were compared with

those from GREIT. GI index is calculated from an EIT tidal image using Eq 14:

GI ¼
P

ijkH
lung
ij � medianðHlungÞk
P

ijH
lung
ij

ð14Þ

where Hlung is the lung region of an EIT tidal image, ij is the index of a pixel within the lung

region. In our research, in order to have comparable results, the lung region, which is derived

from the CT, was kept same in GI calculation.
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Results

Simulation data

Different reconstruction algorithms, GREIT, one-step Gauss-Newton solver and the DCT-

based approach, were applied to the five introduced conductivity distributions. The results are

depicted in Fig 5. As different algorithms have different EIT pixel ranges in the reconstruction,

all images were normalized between [0, 1] in Fig 5. The first column depicts the conductivity

distribution in the simulation model, which served as a ground truth for simulation and evalu-

ation. The images reconstructed with GREIT or background reconstruction with one-step

Gauss-Newton solver are shown in the second and third column, respectively. The DCT-based

approach was implemented with two different priors, in the fourth column are the results with

a contour prior and the fifth column depicts the reconstruction based on the detail prior

derived from simulation ground truth. Reconstructions are displayed using the same colour

range.

From the results, it is obvious that reconstructed images are influenced by different algo-

rithms, though based on the same boundary measurement y. The DCT based reconstructions

do not show artefacts outside of the lung region and show clearer results. For a quantification

of the comparison, the ℓ2-norm of image differences between the ground truth and the recon-

structed images were calculated and are shown in Fig 6. Large, but systematic differences with

respect to the simulation model and to the methods are obtained. It demonstrates the relation

of image quality and information content implemented into the reconstruction priors. The

DCT-based EIT algorithm with the detail prior shows the most accurate reconstruction results.

But even a quite unspecific lung contour prior with the DCT-approach still demonstrates sig-

nificant improvements over the other included methods.

Fig 6. The ℓ2-norm of image difference between the respective reconstruction result and the ground truth.

https://doi.org/10.1371/journal.pone.0285619.g006
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Fig 7 demonstrates the reconstructed results from different algorithms in the simulation of

dorsal atelectasis, where two levels (25% and 50%) of atelectasis were selected. The DCT-based

approach produces very clear results, but it still overestimates the conductivity in the atelectatic

area if only the contour prior is applied. With detail prior, the reconstruction is inhibited

within the atelectasis area. The GREIT reconstruction is quite accurate as well showing almost

no change within the atelectatic area.

The ℓ2-norm of the image difference between the reconstructed image to the ground truth

were illustrated in Fig 8. The result confirms the observation in the first part of the simulation:

the DCT-based EIT algorithm with detail prior shows the most accurate reconstruction results.

However, before the atelectasis level increased to 15%, the ℓ2-norm of the image differences of

the DCT-based EIT algorithm with either detail prior or contour prior appeared to be almost

identical.

Patient data

From six patients with a recent individual CT available, one EIT frame from each patient is

demonstrated in Fig 9. The corresponding CT images are shown in the first row in Fig 9. The

GREIT reconstructions are shown in the second row, while the reconstruction of the DCT-

based approach with detail prior are depicted in the third row.

Obviously, the true conductivity distribution in each patient is unknown, which prohibits

the simple ℓ2-norm of the image difference analysis in simulation studies. Nevertheless, plausi-

bility of the results according to the medical documentation can be judged. In patient A, atelec-

tasis at the left dorsal lung part was observed, which is in accordance with the negligible

conductivity variation in the left dorsal lung area found in the DCT-based reconstruction.

Similarly in patient C who suffered from atelectasis in the left lung area, little variation is

observed in the DCT-based result in the respective area. Patient F had atelectasis at both dorsal

lung parts, which is confirmed by both the CT image and the DCT-based results. Patient B was

diagnosed with pneumonia and inflammation at both dorsal lung areas but was reported to

have a quite good reaction to a PEEP manoeuvre. Inspection of the DCT-based EIT image also

suggests that ventilation of dorsal parts is possible but with less air than in other parts of the

lungs. A homogeneous ventilation distribution is observed in patient D who showed no abnor-

malities in the CT. Patient E was claimed to have pulmonary emphysema at both ventral parts,

Fig 7. Left column: Example atelectasis scale used as ground truth in the simulation. The second to fourth column: Reconstruction images of different

algorithms, GREIT, background reconstruction with one step Gauss-Newton solver, DCT-based EIT approach with contour prior and DCT-based EIT

approach with detail prior, respectively. All pixel values in images are normalized.

https://doi.org/10.1371/journal.pone.0285619.g007
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Fig 9. First row: CT images of the patient, which are used for the segmentation of the lung and thorax shape for EIT reconstruction. Second row:

GREIT reconstructions of conductivity change. Third row: Reconstructions of conductivity change using the DCT-based approach with detail prior

derived from the related CT image.

https://doi.org/10.1371/journal.pone.0285619.g009

Fig 8. The ℓ2-norm of the image difference between the reconstructed image and the ground truth for a certain

scale of atelectasis. Black asterisk: GREIT reconstruction; blue cross: reconstruction with background prior; red circle:

DCT-based approach with contour prior, red diamond: DCT-based approach with detail prior.

https://doi.org/10.1371/journal.pone.0285619.g008
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so less ventilation at the ventral parts can be seen from the DCT-based result. The GREIT

results show a good agreement, i.e., indicating a region where the ventilation occurs, but with-

out morphological details for more interpretability. Fig 10 illustrates a consistent seven-day

monitoring on patient A with the reconstruction results taken from the same PEEP level and

depicted in the same colour scale for comparison. GI index for each PEEP level is shown above

the reconstruction. Patient A was reported to undergo an exacerbation on the third day and

the sixth day [62], which is easily recognised in both algorithm results depicted in Fig 10 as less

ventilation is found in the reconstructions. However, the ventilation variation in the GREIT

results show some deviations on day 3 to 5. The GI indices of both GREIT and the DCT-based

approach support the same changing trend.

Discussion

Contour prior and detail prior were integrated into the DCT-based EIT reconstruction, and

the results were compared to the well-known GREIT algorithm or one-step Newton-Gauss

solver. It was demonstrated that there is a straightforward way to incorporate simple or com-

plex structural priors into the EIT reconstruction. The results clearly indicate that a correct

structural prior, e.g., a valid detail prior, leads to superior reconstruction result in the DCT-

based approach. Especially the DCT-based approach provides a natural way to fuse structural

prior into functional EIT reconstruction. The results from the DCT-based approach show less

error (ℓ2-norm difference to simulation ground truth) when compared to the one-step New-

ton-Gauss solver (basic FEM element clustering) or to GREIT. This finding confirms reports

about the beneficial effect of good structural priors, e.g., a subject specific anatomically accu-

rate forward model produced better reconstruction than the uniform background [55].

Achieving a more interpretable and personalised EIT reconstruction is a significant

advance for the routine EIT application in clinical settings. Different approaches that use

patient related structural priors to improve the reconstruction results are also reported by sev-

eral other research groups. Nakanishi et al. established an anatomical atlas consisting of proba-

bility distributions of tissue conductance obtained from measurements in multiple patients

Fig 10. A seven-day monitor procedure of the patient A at the PEEP stage of 25 cm H20. GI indices were calculated and provided above each image.

First row: GREIT reconstructions of conductivity change; second row: Reconstructions of conductivity change using the DCT-based EIT approach with

detail information prior derived from the related CT image.

https://doi.org/10.1371/journal.pone.0285619.g010
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[63]. It is used as a general prior in a Bayesian reconstruction approach, which is much less

computationally efficient and not personalized. Other work confirmed that the homogeneous

background assumption of most commercially available reconstruction methods may lead to

clinically relevant errors in the reconstruction [55]. This observation indicates a need of effec-

tive methods to integrate individual prior information. In Zhang et al., machine learning tech-

niques are used to efficiently incorporate structural elements into the reconstruction process

[64]. This technique might be a candidate to evaluate the validity of structural priors in the

reconstruction.

GREIT, whose Jacobian matrix is optimized to figures of merit, agreed by experts in the

field, has already achieved very good results. Reconstructed images show reduced position

errors and small ringing artefacts, but still require a target training procedure on a 3D-FEM

model and were always inferior to the DCT-based approach. The DCT-based EIT algorithm

has shown its ability to reconstruct a more accurate conductivity distribution even in extreme

situations with sharp edges or ridges. Since the DCT-based EIT reconstruction is using the

simple but efficient one-step Gauss-Newton solver with a direct mapping to restrain the recon-

struction into a morphological lung area, it comes merely without extra computational cost.

On the contrary with careful selection of the DCT dimensions, a fast 3D-approach can be

implemented in further research due to the reduced degrees of freedom in the reconstruction

[43]. In addition, the GREIT reconstruction showed an imbalance conductivity distribution

between the left lung and the right lung, e.g., pattern b in Fig 5, regardless the similar conduc-

tivity distribution in either lung area, but the results from DCT approaches witnessed the simi-

lar distribution at either side.

Furthermore, the DCT-based approach introduces a personalised structural prior, e.g., CT

derived lung contour, into the EIT reconstruction process. The morphological structure of the

lungs is well preserved both in the reconstructions from simulations and in retrospective clini-

cal datasets. In prospective clinical settings, the regional information in terms of functional sta-

tus of the lungs can thus be directly correlated with the lung structure, providing a

comprehensive insight of the pathophysiology of the lungs. In addition, morphological images,

e.g., CT, should be available for patients that require EIT monitoring, as EIT monitoring is

generally used on patients with mechanical ventilation support. The CT structure is embedded

into the reconstruction, where the FEM is constructed from CT contour information and via

matrix C and mapping T, i.e., the reconstructed image is overlaid with the CT image without

any additional registration process.

The beneficial effect of correct structural priors could be shown in the simulated cases, but

there is a risk associated with priors if they are old or wrong. Misleading results can be pro-

duced from wrong or partially incorrect prior. In the simulation-based evaluation part, the

DCT-based EIT algorithm will generate appealing results when a detail prior from ground

truth is specified. For example, prior information in the rather artificial Pattern e indicates the

conductivity distribution is in form of a chessboard, where the detail prior indicates no varia-

tion should be expected in some locations. This prior will result in an inaccurate reconstruc-

tion if the simulation setting changes. Or in other words, this static prior will be wrong when

the conductivity distribution deviates from chessboard like structure.

In most clinical settings, CT or MRI images are the source to form the basis for the patient

personalised structural prior, but they will not be up to date when EIT might be applied. Usu-

ally, medical imaging is obtained when the patient is admitted to the hospital. Those images do

not reflect the course of the disease or the developing status of the patients’ organs at the time

when the EIT is taken. Nevertheless, they can provide a useful bias that is adjusted by the mea-

sured data during reconstruction. In addition, with the help of physiological modelling and

clinical data, morphological information could be updated over time by predicting potential
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changes based on pathophysiology and available patient measurements. If this is a feasible

approach remains to be shown in the futures. For example, during the seven-day monitoring

of patient A (cf. Fig 10), the left dorsal part of the lung showed little change as this area was an

atelectasis area in the CT. However, we cannot prove the atelectasis area remains the same as

no further CT data are available in the following days. However, the DCT-based EIT recon-

struction still indicates the status of the patient as the deteriorating trend is clear and complies

with the medical record.

It is worthwhile to mention that the reconstructions of the two different algorithms, GREIT

and the DCT-based EIT algorithm, reveal different information in Fig 10. In the GREIT recon-

structions, from day 3 to day 4, there exists a ventilation distribution shift from the right lung

to left lung, and then the ventilation distribution shifted back to the right lung on day 5. This

distribution shift is not observed in the DCT-based EIT results. However, except for the shift,

the changes of the ventilation related conductivity variations are still obvious and correlated

between the two methods. The GI indices also support the same changing trend in both two

methods. It is not clear which algorithm is correct in this case. The shifting in GREIT images

might be a result from positioning the patient from one side to the other (but which is not doc-

umented in the patient record), or the unlikely effect that virus inflammation is switching back

and forth between lung lobes or may be due to numerical effects in the regularization process.

To clarify the clinical situation would require expensive and potentially harming imaging

methods, e.g., single-photon emission CT, which was not available at the bedside.

There are multiple limitations of the contribution. The clinical retrospective data only

includes six patients, and simulations are restricted to a limited number of model cases. Still,

they demonstrate nicely the principles of structural priors. More patients with different type of

lung disease should be included to identify more cases with contradicting results between

reconstruction algorithms. For the long term EIT monitored patient A, the EIT measurement

was conducted during the high peak of COVID-19 pandemic, we cannot assure that the EIT

belt, as well as electrodes, was applied on the same position of the patient during the seven-day

period. There is a possibility that EIT measurement could be corrupted on some day. However,

the decreasing trend of recruitment and the exacerbation on the third day and the sixth day,

which is shown in Fig 10, were confirmed with the doctor [62]. More clinical trials in terms of

longer and consecutive monitoring should also be considered into our future research to verify

the ability of this novel algorithm in detecting the course of disease, and especially when a

structural prior is outdated. Furthermore, this comparison only includes two other algorithms

with roughly the thorax and lung contour specified in the inverse FEM model. The compari-

son merely involves the visual and pixel wise image analysis in simulations. Further investiga-

tions will consider some clinical and EIT indices to compare their stability in clinical data over

different implementations with prior driven EIT reconstruction algorithms. It is worth noting

that the simulation experiments were carried out using a two-dimensional FEM model, but

EIT is sensitive to the area cranial and caudal of the plane of electrodes in reality. A three-

dimensional FEM model can provide more realistic boundary measurement. In addition,

phantom experiments will be very helpful when validating novel algorithms and bringing

them into clinical use. Carrying out phantom experiments is necessary for further develop-

ment of this algorithm. Another concern raised is the intensive computational requirement of

the proposed DCT approach, which may affect real-time analysis of EIT images. However, our

proposed DCT approach does not require recalculation of the DCT subset or the structural

prior unless there is a significant change in patient status. Additionally, specialized algorithms,

such as presented in [65], are taken into the consideration to reduce the computational inten-

sity of DCT significantly. This will allow it to be performed in real-time on standard clinical

hardware.
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In this study, since the access of free parameters is largely reduced by the DCT-based

approach, regularization is not so decisive. Only structural priors were included but the rich

work on regularization has been neglected, for example, total variation, which is a form of

prior knowledge that can be combined with the structural priors that worth further investiga-

tion [51, 53, 61, 66]. However, the choice of regularization is not exclusive. All general regulari-

zation methods covered by Eq 5 can be combined with the presented method to incorporate

structural priors. There is no need to limit the regularization matrix to the Tikhonov prior that

was used in the presented comparisons.

With the structural priors, either contour or detail, in the DCT approach, the interpretation

of the EIT derived functional images appears much easier for clinical staff but may carry the

risk to overestimate EIT resolution and accuracy. However, it is worth noting that the mor-

phological pattern in DCT-based results comes from CT-derived structural prior, rather than

the EIT measurement. The validity of these structural priors should be checked carefully. Fur-

ther research must be carried out to develop a plausibility test for the validity of the structural

prior. Priors from morphological images might lose validity because a clinical setting is a

dynamical system, e.g., showing patient disease status changes or treatment modifications like

prone vs. supine positioning. The outdated prior information might induce a risk in terms of

misleading interpretation of the results and might eventually compromise the diagnosis. A

strategy is required first to carefully select the appropriate prior and second to detect, if the

prior is outdated and misleading. Chen et al. have proposed a method to quantify the error

introduced by a structural prior, which can evolve into an indicator of a false prior [67].

EIT evaluation in clinical setting should reveal useful information for decision making.

Interpretability and easy access to the information provided by the DCT-based approach is

helpful in this respect. For example, detection of overdistention can prevent the patients from

lung damage cause by inappropriately high PEEP settings at the ventilator during the treat-

ment of ARDS patients [68, 69]. The reconstructions produced by the DCT-based EIT algo-

rithm demonstrate the potential to visually detect atelectatic regions, with the individualized

lung morphology superimposed. It is worth noting that incorporating structural priors from

other morphological images into EIT reconstruction is not limited to the DCT-based algo-

rithm alone, and has the potential to be applied to other algorithms. Further exploration of

this potential can lead to improved interpretability of EIT images of other algorithms, which

may have practical implications in personalized protective ventilation treatment.

Conclusion

The DCT-based EIT algorithm has shown the ability to reconstruct the regional inhomoge-

neous distribution of the ventilation correlated with the morphological information obtained

from patient CT data. In addition, the reconstruction result can imply a developing course of

the disease. Anomalies of ventilation distribution shown in the results from the DCT-based

approach is correlated with the morphological information, which leads to an improved inter-

pretation. However, the priors in the DCT-based approach may vice versa lead to inaccurate

results if the pathological status changes with respect to the time of CT recording. Structural

priors implemented in the algorithm can eventually become wrong or outdated with the

course of disease and the pathophysiological development of the patient status, e.g., dependent

atelectasis might be increased because of an interstitial lung edema [70]. Instead of an inter-

pretable reconstruction, the prior implemented algorithm might yield a misleading result

compromising the accuracy of the clinical decisions. Further research should be conducted in

terms of the detect of outdated priors to ensure the accuracy of prior information, which
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might facilitate the diagnostic and monitoring procedure with EIT reconstruction in a clinical

setting.
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