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Abstract: Adapting intelligent context-aware systems (CAS) to future operating rooms (OR) aims to
improve situational awareness and provide surgical decision support systems to medical teams. CAS
analyzes data streams from available devices during surgery and communicates real-time knowledge
to clinicians. Indeed, recent advances in computer vision and machine learning, particularly deep
learning, paved the way for extensive research to develop CAS. In this work, a deep learning approach
for analyzing laparoscopic videos for surgical phase recognition, tool classification, and weakly-
supervised tool localization in laparoscopic videos was proposed. The ResNet-50 convolutional
neural network (CNN) architecture was adapted by adding attention modules and fusing features
from multiple stages to generate better-focused, generalized, and well-representative features. Then,
a multi-map convolutional layer followed by tool-wise and spatial pooling operations was utilized to
perform tool localization and generate tool presence confidences. Finally, the long short-term memory
(LSTM) network was employed to model temporal information and perform tool classification and
phase recognition. The proposed approach was evaluated on the Cholec80 dataset. The experimental
results (i.e., 88.5% and 89.0% mean precision and recall for phase recognition, respectively, 95.6% mean
average precision for tool presence detection, and a 70.1% F1-score for tool localization) demonstrated
the ability of the model to learn discriminative features for all tasks. The performances revealed
the importance of integrating attention modules and multi-stage feature fusion for more robust and
precise detection of surgical phases and tools.

Keywords: context-aware system; laparoscopic video analysis; surgical phase recognition; surgical
tool classification; surgical tool localization

1. Introduction

Recent innovations in the medical field have led to the proliferation of technological
advances inside operating rooms (ORs). As advanced as today’s operating theaters are,
increasing surgical workflow complexity, the emergence of new needs of clinicians, and
new patient preferences, from one side, and advances in data science, artificial intelligence
(especially deep learning), and computer vision, from the other side, are all likely to be
key features in future ORs [1–3]. By integrating intelligent context-aware systems (CASs),
future ORs will enable the transform from clinicians’ knowledge-based to a more data-
driven surgical treatment. Indeed, data-driven treatments include perceptively interacting
with medical teams (e.g., surgical and anesthesiological teams), enabling multi-perspective
knowledge-sharing between medical teams, providing medical support, and mitigating
possible complications [2,4]. In this context, CAS should be able to conceive the workflow
inside the OR, understand the current situation by fusing data from different perspectives
(surgical and patient-related data) [5,6], and predict upcoming surgical events. Thus,
analyzing surgical workflow inside the OR represents a central goal of CAS [7,8].
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Analyzing a surgical workflow relies on modeling surgical procedures as surgical
process models (SPMs) [8]. In this context, surgical workflows can be described as sequences
of surgical phases that represent the main tasks performed during surgery [7,8]. Surgical
phases consist of goal-specific high-level tasks. Hence, different granularity levels have
been defined to model the surgical procedure [8]. In fact, recognizing surgical phases and
detecting surgical tools have great potential in providing intra-operative and post-operative
assistance for clinicians. Recognizing the current surgical phase and predicting upcoming
phases help in promoting better situational awareness inside the OR and providing medical
support to the surgical team by detecting abnormal cases. Moreover, the duration of
the surgical procedure can be estimated and the schedule of the surgical department as
well as resources can be optimized [9]. Automatic surgical phase and tool recognition
systems can also be utilized to label recorded data and, therefore, provide trainees with
training materials.

In the domains of surgical phase recognition and tool detection, the described ap-
proaches relied on different data sources, such as surgical videos (laparoscopic [10], mi-
croscopic videos [11]), sensor data [12,13], instrument sensors [14,15], and medical device
data [16]. As laparoscopic surgery became an established surgical practice and nearly
replaced open surgery, significant research was conducted on laparoscopic video data.
The main advantages of laparoscopic videos over other data sources are that they are
already integrated into the current setup inside ORs, can be easily accessed and captured,
and can provide comprehensive information about the surgical instruments used, the
anatomies treated, and activities conducted. On the other hand, analyzing laparoscopic
videos has been a challenging task for researchers in the field of surgical data science
(SDS) [2]. Extensive efforts have been made to develop video-based approaches for the
automatic recognition of surgical phases [17] and the detection and localization of surgical
tools. Earlier approaches relied on extracting visual features from laparoscopic images and
then employing an adequate classifier [10,18,19]. In recent years, the present-day evolution
in deep learning (DL), triggered by the development of high-performance hardware infras-
tructure, has shifted the focus to DL-based approaches rather than relying on traditional
machine learning approaches. Interestingly, DL techniques, specifically convolutional
neural networks (CNNs), have shown superior performance to other methods [20].

In this work, a spatiotemporal, a weakly-supervised deep learning approach for
analyzing laparoscopic surgical videos (in terms of surgical phase recognition, surgical
tool classification, and localization) was proposed. Initially, ResNet-50 was chosen as the
base model, but with the following modifications: First, four squeeze-and-excitation (SE)
attention modules were adopted to the CNN architecture to enhance the CNN capability to
learn more discriminative features and focus on tool-related regions in the image; Second,
feature maps from low and top layers were aggregated to generate a better representation
of image content. The aggregated features were then shared by two branches (tool and
phase branches). Following a similar trend as the earlier approaches [21], the tool branch
contained a convolutional layer to generate multiple feature maps per tool class. By
implementing tool-wise pooling and spatial pooling operations, the tool-related feature
maps were transferred into a localization map and tool-presence confidence, respectively.
The phase branch was composed of a global average pooling (GAP) layer followed by a
concatenating layer to include tool presence probabilities in the final feature vector for phase
recognition. The LSTM network was finally employed to model temporal information that
is crucial for phase recognition and tool presence detection tasks. The proposed model was
evaluated on the Cholec80 dataset [22].

2. State of the Art

For surgical phase recognition, several DL approaches are presented in the litera-
ture, including spatial and temporal models. Indeed, temporal information along the
surgical video sequence is essential to model dependencies between surgical phases that
are typically performed in a specific order [17]. Therefore, a base CNN model, such as
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ResNet-50 [23] or VGG-16 [24], was first adapted and utilized for extracting spatial features
from laparoscopic images. Then, a temporal model (such as the hidden Markov model
(HMM) [22,25] or recurrent neural network (RNN) [26–28]) was incorporated to refine the
CNN predictions. Twinanda et al. presented a multi-task CNN model that performed
surgical phase recognition and tool classification [22]. Hierarchical HMM (HHMM) was
employed as a temporal model to perform online and offline recognition of surgical phases.
To overcome drawbacks imposed by statistical models, later approaches implemented long
short-term memory (LSTM) networks to learn temporal features [26,28,29]. For example,
Twinanda et al. substituted the HHMM models in the EndoNet methodology with an LSTM
model [26]. Jin et al. proposed a CNN-LSTM deep learning framework (SV-RCNet) trained
end-to-end with a prior knowledge inference scheme to carry out phase recognition [29].
Similarly, Jin et al. devised the MTRCNet approach that performed both the surgical phase
and tool recognition and employed a novel loss function that considered the phase-tool
relation [27]. Jalal et al. suggested using a nonlinear autoregressive network with exoge-
nous input (NARX) with a CNN for surgical phase prediction [28]. In [30], a temporal
approach called TeCNO, which combined a ResNet-50 model with a multi-stage temporal
convolutional network (MS-TCN), was proposed. Recently, various transformer-based
models tailored for laparoscopic phase recognition have been introduced [31]. For instance,
Czempiel et al. designed the OperA approach that is based on a transformer model to
concurrently learn spatial and temporal features along video sequences [32]. Gao et al.
employed a hybrid embedding aggregation transformer to aggregate spatial and temporal
features generated by ResNet-50 and TCN models [33].

Surgical tool classification and localization were tackled in a similar fashion to phase
recognition, and several methods suggested multi-task models for surgical presence de-
tection and phase recognition. In [22], surgical tool classification was conducted solely
based on spatial features learned by a CNN model. Subsequent studies addressed typical
challenges facing tool classification methods, such as imbalanced data distribution and
obscured images. Loss-sensitive and resampling techniques were introduced in [34] to
mitigate the effects of the imbalanced distribution of surgical tools on the CNN training
process. Spatiotemporal models were introduced to refine tool predictions obtained by
the CNN model. Several temporal models, such as LSTM [35–37], graph convolutional
networks (GCN) [38], and convolutional LSTM [39], were presented in previous works.
Abdulbaki Alshirbaji et al. proposed combining a CNN model with two-stage LSTM mod-
els to model temporal dependencies in short video clips and along the complete surgical
video sequence [35]. Despite the various successful approaches that have been developed,
the progress achieved in the SDS field is still limited and still lacks significant applica-
tions in practice [2]. The main reason is the scarcity of labeled surgical data. Therefore,
several techniques have been introduced to increase the size of data used for training
CNN models [40]. These include data augmentation and generative adversarial network
(GAN) [41]. Moreover, weakly-supervised learning of CNN models represents a potential
solution for object localization. Here, the CNN is designed to perform object localization
but trained only with object presence binary labels. Durand et al. suggested an approach
for weakly-supervised object localization by adding a multi-map localization layer on top
of the CNN model [21]. They also introduced a novel spatial pooling strategy to transform
the multi-maps into a class-wise localization map. Their approach was investigated by
Vardazaryan et al. [42] and Nwoye et al. [39] for surgical tool localization in laparoscopic
videos, and it performed very well.
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Recently, CNN-attention networks have been proposed; they involve adopting atten-
tion modules into the CNN architecture to help generate more focused features. Shi et al.
proposed an attention-based CNN to perform surgical tool detection in laparoscopic im-
ages [43]. In [44], an attention-guided network (AGNet) for surgical tool presence detection
achieved high performance on the m2cai16-tool dataset. Furthermore, Jalal et al. em-
phasized the value of employing attention modules for surgical tool localization in their
feasibility study [45]. Attention CNN was capable of generating more fine and focused
gradient class activation maps (Grad-CAM) that were utilized to extract bounding boxes.
The proposed approaches were evaluated on a single dataset or a single type of surgical
procedure. Therefore, the robustness and generalizability of deep learning approaches
toward new data represent the main concerns that need to be investigated before translating
these approaches into clinical practice [46].

3. Materials and Methods
3.1. System Architecture

The proposed architecture for laparoscopic surgical video analysis (presented in
Figure 1) consists of ResNet-50 as a backbone model followed by two branches for phase
recognition, tool localization, and classification. The ResNet-50 model was modified by
incorporating four SE-attention blocks and adding multi-stage feature fusion connections.
The tool localization branch is composed of a multi-map convolutional layer for tool local-
ization, as well as tool-wise and spatial pooling layers. The tool-wise and spatial pooling
outputs represent the tool localization maps and tool presence confidence, respectively.
The phase recognition branch consists of a GAP layer to transfer the feature maps from the
last SE module into a feature vector, a concatenating layer that combines the feature vector
from the GAP layer with tool presence probabilities obtained from the spatial pooling layer,
a fully-connected layer (FC), and finally an LSTM layer to model temporal dependencies
along the laparoscopic video.

3.1.1. Backbone CNN Model

Based on previous work [35], the ResNet-50 performed better than other base CNN
models for surgical tool classification. Therefore, the ResNet-50 was chosen to perform
this study. The ResNet-50 is composed of 5 blocks with output feature maps of 64, 256,
512, 1024, and 2048, respectively. The first block consists of 1 convolutional layer followed
by a max pooling operation, while the other four blocks are built as a stack of 3, 4, 6, and
3 residual units. Each residual unit consists of a stack of three convolutional layers, each
followed by a batch normalization and a rectified linear unit (ReLU) layer. The network has
(on top) a GAP layer, an FC layer, and softmax. The input image size of the ResNet-50 is 224
× 224 × 3. To maintain spatial information, the following modifications were introduced:
first, the spatial dimension of the input was increased to 375 × 300; second, the strides of
the convolutional layers were set to 1 × 1 (similar to Vardazaryan et al. [42]) to preserve
the higher resolutions of obtained feature maps.
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Figure 1. An overview of the proposed approach for phase recognition, tool localization, and classi-
fication. SE blocks are the squeeze-and-excitation attention modules; the Conv2D layer represents
the multi-map convolutional layer where T is the number of tool classes in the dataset, and N is the
number of feature maps generated per tool.

3.1.2. Squeeze-and-Excitation (SE) Attention Modules

Attention modules were adapted to the ResNet-50 model to enhance the ability of
the CNN to learn more focused and important information related to the surgical tools
rather than the background information. Squeeze-and-excitation (SE) attention module [47]
was chosen in this study due to its efficient and fast computational performance and
its potential to improve performance over base CNN models [48]. The SE considers the
relationship between feature channels and recalibrates the channel-wise features through
the squeeze and excitation operations (Figure 2). The squeeze operation compresses the
input W×H×C feature maps into a 1 × 1 × C vector by using GAP (Equation (1)). The
excitation operation learns weights for each feature channel to model the dependencies
between feature channels (Equation (2)). Two FC layers are employed to perform the
excitation operation, where the first FC reduces the dimensionality by a reduction factor
R, and the second FC expands the input data back to the original dimension. The two FC
layers are followed by ReLU and Sigmoid activation layers, respectively. The output of the
Sigmoid is then multiplied by the input feature maps of the squeeze operation generating
more focused features. The squeeze and excitation operations are represented as

Zn =
W

∑
i=1

H

∑
j=1

yn(i, j) (1)
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where yn ∈ RW×H represents a feature map, H and W are the feature map height and
width, Zn is an element of Z ∈ RC.

E = Sigmoid(W2×ReLU(W1Z)) (2)

where W1 ∈ R C
R×R and W2 ∈ RC× R

C are the weights of the first and second FC layers,
respectively, and R is the reduction factor.

Four SE modules were used in this study and added after the second, third, fourth,
and fifth convolutional blocks of the ResNet-50 (see Figure 1). The number and locations
of added SE modules were specified based on an extensive evaluation carried out and
previously published in [48]. The R was selected to be 16 for all SE blocks.

Figure 2. Squeeze-and-excitation attention module architecture.

3.1.3. Multi-Stage Feature Fusion (MSF)

Traditional CNN models rely on providing the features from the top layer to an
FC layer to perform classification. Recently, the aggregation of low-level and high-level
features showed improvement in object classification accuracy over using only high-level
features [49]. Additionally, while high-level features from top convolutional layers contain
semantic information for target classes, features from shallow convolutional layers represent
generic features describing detailed information at the instance level. Therefore, fusing
features obtained at different levels of the CNN model has the potential to enhance the
generalization capability of the CNN and provide a better representation of the input
space [50].

In this study, feature maps from three intermediate layers were combined with the
feature maps of the last layer and utilized later to perform phase recognition, tool clas-
sification, and localization. The outputs of the second, third, and fourth SE blocks were
first passed through a batch normalization (BN) and a regularization (ReLU) layer. The
outputs from the ReLU layers were then concatenated and forwarded to the multi-map
convolutional layer and a GAP layer (Figure 1).

3.1.4. Multi-Map Convolutional Layer (MMC)

To obtain localization feature maps of each tool, a convolutional layer, termed multi-
map convolutional layer was added to learn tool-related spatial features. The convolutional
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layer has T×N filters and a kernel size of 3×3. T is the number of tool classes (T = 7 for
Cholec80 dataset), and N represents the number of feature maps for each class (N = 4
was chosen for this study). The stride was set to 1×1 to maintain high spatial resolution.
The output dimensionality of the MMC layer is W2×H2×TN. Therefore, the output of this
convolutional layer consists of four feature maps per tool class. These feature maps were
learned by the training the model with binary tool presence labels. The MMC layer had a
Sigmoid activation function.

3.1.5. Tool-Wise and Spatial Pooling Layers

The four feature maps of each tool were transferred into a localization map by applying
tool-wise pooling. Max pooling operation was applied across the M feature maps. There-
fore, the tool-wise pooling transferred the feature maps from W2×H2×TN to W2×H2×T.
These maps were utilized to obtain localization maps of the surgical tools and allocated
bounding boxes.

To obtain estimation confidence of the tools, the output of the tool-wise pooling was
then passed through spatial pooling. The spatial pooling introduced by Durand et al. [21]
was implemented in this study. Giving M the output of the class-wise pooling, M̃max the
top maximum Kmax elements of M, and M̃min the lowest minimum Kmin of M, the spatial
pooling equation can be described as

S =
1

Kmax
∑
i,j

M̃max + α

(
1

Kmin
∑
i,j

M̃min

)
(3)

where Kmax and Kmin are chosen to be equal to 50.

3.1.6. LSTM Network

The recognition of surgical phases and detection of tools require learning static and
sequential information along the laparoscopic video. Therefore, an LSTM network was
employed to learn temporal features. The LSTM network has a sequence-to-sequence
configuration and was trained with sequences of spatial feature vectors. Every feature
vector represents the features of each image extracted using the GAP layer combined with
tool presence confidences. An LSTM network of one LSTM layer with 512 cells was chosen
for this study.

3.2. Model Evaluation
3.2.1. Dataset

The Cholec80 dataset [22] was used in this study for evaluating the performance of the
proposed approach. The Cholec80 is composed of 80 videos of cholecystectomy procedures
labeled with surgical phases and presented surgical tools. Seven surgical phases and seven
tools have been defined. Details about the surgical phases and tools are presented in
Table 1. The videos were recorded at 25 frames-per-second (fps), but the tool labeling was
carried out at 1 fps. The tool was defined as present if at least half of its tip was visible. In
accordance with previous studies, the first 40 videos of the Cholec80 dataset were used for
training the model, while the last 40 videos were used for model evaluation.

Since surgical tools were labeled with only binary presence signals, another small
dataset (termed Cholec80-Boxes) was created for the evaluation of the tool localization task.
Here, the first five videos of the test set were labeled with bounding boxes around the tool‘s
characteristic tip. The bounding box labeling was carried out by two medical engineers
using the MATLAB Video Labeler toolbox (R2021a, The MathWorks, Natick, MA, USA).
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Table 1. Surgical phases and tools in the Cholec80 dataset; Xindicates the phases in which the tool is
often used.

Number Phase Duration
Mean ± Std. Grasper Bipolar Hook Scissors Clipper Irrigator Specimen

Bag

P1 Preparation 107± 103 X x x x x x x
P2 Calot Triangle

Dissection 935± 663 X X X x x x x

P3 Clipping and
Cutting 176± 128 X x x X X x x

P4 Gallbladder
Dissection 730± 533 X X X x x X x

P5 Gallbladder
Packaging 95± 48 X x x x x x X

P6 Cleaning and
Coagulation 179± 156 X X x x x X X

P7 Gallbladder
Retraction 83± 75 X x x x x x X

3.2.2. Evaluation Criteria

The mean average precision (mAP) was utilized as an evaluation metric for surgical
tool presence detection. The AP was first calculated for each tool by computing the area
under the precision–recall curve, and the mAP was then obtained by calculating the average
overall tool classes.

For tool localization, the F1-score metric was utilized and computed as in Equation (4).
First, the intersection over union (IoU) between the predicted bounding box and the
manually labeled bounding box was calculated. The predicted bounding box was counted
as true positive prediction if the tool presence confidence and the IoU exceeded certain
thresholds TC = 0.5 and TIoU = 0.5, respectively. If the predicted bounding box had an
IoU and tool confidence lower than the TIoU and TC, respectively, it was counted as a
false positive prediction. False negative predictions represented bounding boxes with tool
confidences lower and greater than TC but with IoU lower than TIoU .

F1 = 2 Precision∗Recall
Precision+Recall (4)

To evaluate the performance of surgical phase recognition, the precision and recall
were utilized and computed for each phase as

Precision =
PhG ∩ PhP

PhP
, Recall =

PhG ∩ PhP
PhG

(5)

where PhG is the phase ground truth and PhP is the phase prediction.

3.2.3. Training Setup

For the tool presence detection task, three approaches were compared in this work. The
first approach is termed CNN-MMC and is composed of the ResNet-50 model combined
with the MMC and the tool-wise and spatial pooling layers. The second approach is termed
CNN-SE-MSF and consists of the CNN-MMC but adapted by adding SE attention modules
and the MSF. The third approach is composed of the CNN-SE-MSF combined with an
LSTM network to model temporal dependencies along the surgical video and is termed
CNN-SE-MSF-LSTM. For the tool localization task, the CNN-MMC and CNN-SE-MSF
approaches were compared. Table 2 presents a summary of the applied approaches.
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Table 2. Description of the evaluated approaches.

Approach Description

CNN-MMC The CNN model combined with the MMC layer and tool-wise and
spatial pooling.

CNN-SE-MSF The CNN-MMC approach but adapted by adding SE attention modules
and the MSF.

CNN-SE-MSF-LSTM The CNN-SE-MSF was combined with an LSTM network to model
temporal dependencies along the video sequence.

The ImageNet weights of the ResNet-50 transferred layers were utilized as initial
values, while added layers were initialized with random weights. The losses for tool
classification and phase recognition tasks were computed using binary cross-entropy
(Equation (6)) and softmax multinomial logistic (Equation (7)) functions, respectively. To
compensate for the effects of the imbalanced distribution of the tools, loss-sensitive learning
was applied by weighing the loss of each tool based on its distribution in the training set.

Toolloss =
−1
B

B

∑
n=1

T

∑
t=1

wt[ln
t log (Cn

t ) + (1− ln
t ) log (1− Cn

t )] (6)

where Toolloss is the total loss of all tools, B is the batch size, T is the number of tools in
the dataset, wt represents the loss weight calculated for every surgical tool, ln

t = [0, 1] is
the tool presence ground truth, and Cn

t is the tool presence confidence obtained from the
spatial pooling operation.

Phaseloss =
−1
B

B

∑
n=1

P

∑
p=1

Gn
p log σ(Pn

p ) (7)

where Phaseloss is the total loss of surgical phases, B is the batch size, P is the number of
defined phases in the dataset, Gn

p is the ground truth of image n, Pn
p is the output of the FC

layer and σ represents the softmax activation function.
An Adam optimizer and cyclical learning rate [51] were implemented to eliminate

the need to find the best values for the learning rate. The bounds of the cyclical learning
rate were 0.005 and 0.000001, and a step size of 4× iteration− per− epoch was chosen. The
CNN model was trained with a batch size of 50 images, and the images were shuffled for
every epoch. All spatial models were trained for 30 Epochs. The LSTM was trained with
complete video sequences with a batch size of 1 video for 50 Epochs. The implementation
of the models was performed in the Keras framework with the Anaconda platform and run
on an NVIDIA RTX A6000 graphics processing unit (GPU).

4. Results

The results of the tool presence detection obtained by the CNN-MMC, CNN-SE-MSF,
and CNN-SE-MSF-LSTM approaches are shown in Figure 3. Figure 4 shows the F1-score for
tool localization using the CNN-MMC and CNN-SE-MSF approaches. From both figures,
the results show the value of adding the attention modules and combining features from
multiple stages to improve tool presence detection and generate better localization maps
for all tools. The average precision of all tools was enhanced by a large margin over the
CNN-MMC, and the most notable enhancement was achieved after employing the LSTM
network. To further validate the results of the proposed approach, tool-wise comparisons
between the CNN-SE-MSF-LSTM and the state-of-the-art methods are presented in Table 3.
As can be seen, the proposed approach achieved superior performance over the state-
of-the-art methods in most tool categories. Table 4 lists the phase recognition results on
the Cholec80 dataset using the CNN-SE-MSF-LSTM approach. The precision and recall
of all phases and the mean values are presented. Additionally, a comparison with the
leading methods is also presented in Table 5. The training times and inference times of the
evaluated approaches are presented in Table 6.
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In order to provide insight into the performance improvement achieved by the pro-
posed approach, qualitative results for tool detection and phase recognition were visu-
alized. Figure 5 visualizes localization maps of every tool obtained by the CNN-MMC
and CNN-SE-MSF models. Every image contains the manually labeled bounding box and
the predicted bounding box of the corresponding tool, and is labeled with the IoU value
between the two boxes. The examined tool class probability was higher than 98% obtained
by CNN-MMC or CNN-SE-MSF for all images. Figure 6 shows the predictions and ground
truth of the top-3 and bottom-3 procedures for surgical phase recognition.

Figure 3. Tool presence average precision (AP) on the Cholec80 dataset. Note the truncated scale of
the y-axis.

Figure 4. Tool localization F1-score on the Cholec80-Boxes dataset. Note the truncated scale of the
y-axis.
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Table 3. Comparison of surgical tool presence detection results (%) of different approaches on the
Cholec80 dataset (the best performances are indicated in bold).

Tool EndoNet [22] MTRCNet [27] Nwoye [39] GCN [38] ResNet-LC-LV [35] CNN-SE-MSF-LSTM

Grasper 84.8 84.7 99.7 - 87.4 91.0
Bipolar 86.9 90.1 95.6 - 95.9 97.3
Hook 95.6 95.6 99.8 - 99.4 99.8

Scissors 58.6 86.7 86.9 - 92.7 90.3
Clipper 80.1 89.8 97.5 - 98.5 97.4
Irrigator 74.4 88.2 74.7 - 91.4 95.6

Specimen bag 86.8 88.9 96.1 - 96.6 98.3
Mean 81.02 89.1 92.9 90.1 94.6 95.6

Table 4. Precision and recall of phase recognition results using the proposed approach on the Cholec80
dataset.

Phase
Precision Recall

ResNet-50 CNN-SE-MSF-LSTM ResNet-50 CNN-SE-MSF-LSTM

P1 71.8 98.0 54.3 94.6
P2 84.0 98.4 85.1 95.8
P3 73.7 80.8 69.7 86.3
P4 85.4 92.4 84.7 95.2
P5 62.5 80.1 79.0 87.6
P6 68.7 83.5 71.2 75.9
P7 58.2 86.3 58.4 84.7

Mean 72.0 88.5 71.8 89.0

Table 5. Comparison of phase recognition results (%) of different approaches on the Cholec80 dataset
(best performances are indicated in bold).

Approach Accuracy Precision Recall

EndoNet [22] 81.7 73.7 79.6
SV-RCNet [29] 90.7 88.1 88.9
MTRCNet [27] 89.2 86.9 88.0

TeCNO [30] 89.0 80.9 87.4
OperA [32] 91.2 82.2 86.9

Jalal et al. [52] 92.9 90.1 85.1
CNN-SE-MSF-LSTM 93.1 88.5 89.0

Table 6. Computation times of the evaluated approaches. An NVIDIA RTX A6000 GPU was used for
implementation.

Approach Training (h) Test (ms/image)

CNN-MMC 17.5 20
CNN-SE-MSF 20 24

CNN-SE-MSF-LSTM 30 25
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Figure 5. Visualization of localization maps of the CNN_MMC and CNN_SE_MF approaches for the
seven surgical tools. For each tool, the manually labeled and predicted bounding boxes are visualized
in green and blue, respectively. Images are labeled with the IoU (%) between the predicted and
manually labeled boxes.

Figure 6. Color-coded visualization for phase recognition results of the top-3 (a,d,c) and bottom-3
(d,e,f) procedures. The ground truth is at the top, and the prediction is at the bottom.



Sensors 2023, 23, 1958 13 of 19

5. Discussion

This study presents a multi-task, weakly supervised deep learning approach trained by
binary tool presence labels and phase labels to analyze laparoscopic videos. The approach
is intended to recognize surgical phases and detect and discriminate between surgical
tools. An extensive evaluation of the proposed model was conducted on the Cholec80
dataset [22].

5.1. Phase Recognition

The proposed approach yielded a mean recall and mean precision of 89.0% and
87.9%, respectively. These values improved on the base ResNet-50 model mean recall
and precision values of 71.8% and 72.0%, respectively. Hence, the attention modules and
combining features from multiple stages helped the model to leverage better phase-related
feature representation of the laparoscopic image content. Additionally, the LSTM network
contributed effectively to modeling the temporal constraints of surgical phases.

As can be seen from the precision and recall values in Table 4, the proposed approach
achieved the best performance for P1, P2, and P4 with recall values of 94.6%, 95.8%, and
95.2%, respectively. Conversely, the results of other phases were lower, particularly for P6.
This high variance between these phases is interpreted by the imbalanced data distribution,
where P2 and P4 typically have longer periods than other phases in the cholecystectomy
procedures. This can be seen from the mean duration of each phase presented in Table 1.
The first four phases are performed consecutively (i.e., linear phase transitions), while the
last three phases are associated with non-linear transitions. Consequently, P5, P6, and P7
had lower recognition performance. In a similar way, obtaining a high precision value of
P2 (98.4%) interprets the high recognition results of P1 despite its low distribution in the
dataset.

The tool-phase relation has already been addressed in other works and also described
in the introduction and methodology sections. Therefore, it is worth noting that, there
is a high correlation between the results obtained for tools and phases. For instance,
the high hook presence detection performance of 99.7% matches the high recognition
performances of P2 and P4, which are mainly performed with the hook tool. Furthermore,
the improvements obtained by the CNN-SE-MSF-LSTM approach over the CNN-MMC for
scissors explain the improvements obtained for P3 (Recall of 86.3%).

5.2. Tool Classification and Localisation

Experimental results show that adding the SE attention modules and combining
features from low and high layers improved the tool classification performance over
previous methods. Moreover, employing the LSTM network yielded the most notable
improvement for all tools, particularly the scissors. CNN-SE-MSF-LSTM and CNN-SE-
MSF achieved mAP values of 95.6% and 94.1%, respectively. These values exceeded the
established CNN-MMC [42] mAP of 90.4% (see Figure 3) and imply the advantage of
using attention modules and the MSF for tool classification. Moreover, modeling temporal
dependencies along the video sequence helped refine classifications obtained by only
employing spatial models.

Every surgical phase is performed by the surgeon using a specific set of tools. This
explains the basis of developing a multi-task approach that jointly performs tool and
phase recognition. Since the surgical phases are performed in a specific sequence, the
tool’s appearance during the surgery is also somewhat constrained. Therefore, the best
classification performance was achieved after employing the LSTM (Table 4). The AP of
some tools (e.g., scissors) was enhanced by a larger margin over the spatial model, while
other tools had a smaller improvement (e.g., grasper). This high variance in improvements
between the tools can be interpreted by the surgical phases associated with these tools. For
instance, the scissors were only required during the third phase (cutting and clipping) to
cut the cystic duct. Hence, the LSTM learned discriminative temporal information for the
scissors. On the other hand, the grasper was utilized during all phases to grasp tissues.
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Therefore, modeling temporal information provided negligible performance enhancement
for the grasper classification.

Figure 4 shows the qualitative assessment of the CNN-MMC and CNN-SE-MSF-LSTM
approaches. From the localization maps of each tool, it can be noticed that the CNN-SE-
MSF was capable of learning the tool regions better than the base CNN-MMC model. The
IoU values between the manually labeled and predicted bounding boxes show better
localization performance using the CNN-SE-MSF approach. Moreover, adding the SE and
MSF to the CNN-MMC helped smooth the localization map and make it look closer to the
shape of the tooltip (Figure 5, grasper tool).

In the Cholec80 dataset, the grasper has multiple tool instances (i.e., up to three
graspers may appear in the image) while all other surgical tools have a single tool instance.
The proposed approach was designed to generate one localization map per tool, Never-
theless, multiple instances of the grasper were detected through a post-processing step.
Here, the largest three objects in the localization map of the grasper were considered as
’detections’, and the bounding boxes were assigned the same confidence that represents
the grasper presence probability. Figure 7 shows an example of multiple instances of the
grasper and the detected bounding boxes. As can be seen, the proposed approach was
able to localize the three instances of the grasper, however, only two of the ’detections’
were considered as TP with IoU greater than TIoU = 0.5. The region that contained the
shaft of the third grasper (with IoU = 27.83%) was also detected in the localization map as
part of the tool and not only the characteristic tip. Indeed, the weakly-supervised training
of the proposed approach resulted in relatively larger bounding boxes that included the
tip and parts of the tool shaft. In principle, the shaft is also part of the tool but according
to the evaluation criteria of this work, only the tooltip should be localized. However,
labeling the tool shaft with additional bounding boxes has the potential to better evaluate
the performance of the model in terms of the ability to separate background information
from tool regions, and potentially also capture the tool orientation as well as location.

Figure 8 shows that the proposed approach failed to detect the bounding box precisely,
even in cases when the activated regions matched the tool location in the image. For the first
image (Figure 8a), the manually labeled and predicted bounding boxes of the bipolar are
presented in green and blue, respectively. The feature map obtained for the bipolar is also
shown in Figure 8c. The bipolar partially appears in the image, and only a small part of the
tip was detected. The bipolar tip consists of two parts, a characteristic blue clevis part and
the grasping part that has a similar appearance to the grasper tip. Therefore, the detection
of the bipolar relied on localizing its blue clevis, not the entire tooltip. Both the tooltip and
the clevis was considered for labeling the Cholec80-Boxes. Hence, the labeling protocol
can be modified accordingly by only considering the characteristic clevis of the bipolar.
Similarly, the clevis of the bipolar in Figure 8b was detected by the proposed approach as
two separate objects as can be seen in the localization map of the bipolar (Figure 8d). In
the post-processing step, only one object was counted for detecting the bipolar bounding
box, which lead to a false prediction with IoU = 28.43%. Therefore, the rate of this kind of
false detection could potentially be ameliorated by refining the post-processing step (e.g.,
morphological image processing).
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Figure 7. Multiple instances of the grasper (left) and the localization map (right). The green and blue
boxes represent the manually labeled and predicted bounding boxes, respectively. Each bounding
box is labeled by the IoU (%) value.

Figure 8. Examples of false detections of the bipolar bounding box. (a,b) show laparoscopic images
of the bipolar with manually labeled (green) and predicted (blue) bounding boxes. Each bounding
box is labeled by the IoU (%) value; (c,d) represent the localization maps obtained by the proposed
approach for the bipolar.

5.3. Comparison with The State-of-the-Art

Tables 3 and 5 present comparisons with the leading methods for surgical tool presence
detection and phase recognition. Twinanda et al. introduced the base model EndoNet
that performed tool presence detection and phase recognition in a multi-task manner [22].
HHMM was employed to model temporal dependencies between surgical phases. They
achieved a mAP of 81.0% for tool presence detection and a mean precision and mean recall
of 73.7% and 79.6% for surgical phase recognition, respectively. Jin et al. tackled tool
detection and phase recognition tasks in a similar fashion but employed an LSTM network
as a temporal model. They also introduced a novel loss function that better considered
the tool-phase relation. Their methods showed great improvements over the EndoNet
with a mAP of 89.1% for tool detection and a mean recall of 88% for phase recognition.
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However, in both approaches, tool presence detection was carried out solely based on
spatial information learned by the CNN model. On the contrary, this work proposed using
the LSTM network for both phase recognition and tool presence detection tasks.

Wang et al. [38] proposed using a graph convolutional neural network (GCN) to
learn temporal information from short video clips for the tool classification task. They
evaluated their methodology on the Cholec80 dataset and reported a value of 90.1% for
mAP. In a recent study [35], two stages of temporal modeling were proposed to learn
dependencies, first from short video sequences of unlabeled frames and then across the
whole surgical video. This approach yielded the best performance results reaching mAP
of 94.6% between other tool presence detection methods [35]. Vardazaryan et al. [42]
transferred the weakly-supervised WILDCAT approach [21] into the tool localization in
laparoscopic videos. Indeed, the CNN-MMC (Table 2) approach represents a reproduction
of their work. Nwoye et al. [39] built upon work in [42] and employed a convolutional
LSTM layer to learn spatiotemporal coherence along the video sequence. Similar to this
study, both approaches Vardazaryan et al. [42] and Nwoye et al. [39] were trained only
with the binary tool labels, and they reported the tool presence of mAP at 87.2% and
92.9%. Interestingly, the model presented in this study (CNN-SE-MSF-LSTM) achieved
higher mAP values than [35,38,39,42] at 95.6%. The tool localization results of this were not
compared with other works because of different types of evaluation data.

For phase recognition, Jin et al. [29] proposed the SV-RCNet deep learning approach,
which is composed of a CNN and LSTM network. They also introduced a prior knowl-
edge inference scheme. Their method yielded a high recognition performance with mean
precision and mean recall of 88.1% and 88.9%, respectively. Recently, Czempiel et al. [30]
proposed using a temporal convolutional network, and they reported 80.9% and 87.4%
precision and recall, respectively. In [52], combining a CNN with a two-stage LSTM, the
authors achieved 92.9% accuracy on the Cholec80. Recent studies proposed using trans-
formers instead of LSTM networks for temporal modeling. Czempiel et al. [32] proposed
the OperA approach based on a transformer model. They reported 82.2% and 86.9% for
precision and recall, respectively. Indeed, the CNN-SE-MSF-LSTM exceeded the perfor-
mances of most state-of-the-art methods for phase recognition (Table 5) and achieved the
best recall value of 89.0% and 88.5% precision.

5.4. Limitations and Future Scope

An experimental evaluation of the proposed approach was carried out using a single
dataset (Cholec80). To justify the robustness and generalization capability of this approach,
extensive evaluations with other datasets should be performed. Furthermore, the spatial
and temporal models were trained separately, not end-to-end. Indeed, end-to-end training
is the main drawback related to its computational burden, where a large GPU memory is
required. Nevertheless, end-to-end training can be done using short image sequences to
leverage better spatial–temporal features. The LSTM can then be trained with complete
video sequences.

The developed framework has the potential to be employed as a first step in labeling
new datasets. For instance, bounding boxes can be generated and then modified by labeling
specialists. Consequently, manual tagging to support DL model development could be
achieved with less time and effort.

6. Conclusions

This study proposed a deep learning approach for surgical phase recognition, tool
presence detection, and weakly-supervised tool localization. A CNN-based model was
modified by adding SE attention modules and fusing features from multiple stages to
enable a better representation of the image input space. Temporal information was also
modeled using an LSTM network. The thorough quantitative evaluation and qualitative
analysis of the proposed approach demonstrated high tool presence detection performance
that exceeded all state-of-the-art methods. Furthermore, the phase recognition performance
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was comparable to previous studies and had the best sensitivity among them. Finally, the
tool localization performance achieved showed that this approach has the potential to be
integrated into intelligent systems that require automatic localization of surgical tools.

Author Contributions: Conceptualization, N.A.J., T.A.A. and K.M.; methodology, N.A.J., T.A.A. and
H.A.; software, N.A.J. and T.A.A.; validation, N.A.J., T.A.A. and S.K.-Z.; formal analysis, T.A.A.,
N.A.J., P.D.D., T.N. and K.M.; investigation, N.A.J., T.A.A. and B.L.; resources, K.M.; data curation,
N.A.J., T.A.A. and H.A.; writing—original draft preparation, N.A.J.; writing—review and editing,
T.A.A., P.D.D., H.A., B.L., S.K.-Z., T.N. and K.M.; visualization, N.A.J. and T.A.A.; supervision, P.D.D.,
T.N. and K.M.; project administration, K.M.; funding acquisition, K.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the German Federal Ministry of Research and Educa-
tion (BMBF) under grant CoHMed/IntelliMed 13FH5I05IA and grant CoHMed/PersonaMed B-
3FH5I09IA.

Data Availability Statement: The data presented in this study were composed of two datasets
(Cholec80 and Cholec80-Boxes). The Cholec80 dataset is available (http://camma.u-strasbg.fr/
datasets/ (accessed on 22 March 2017)) from the publisher upon request. The Cholec80-Boxes dataset
is available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OR operating room
CAS context-aware system
SDS surgical data science
DL deep learning
CNN convolutional neural network
HMM hidden Markov model
LSTM long short-term memory
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