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Abstract: Electrical Impedance tomography (EIT) imaging
su�ers greatly from the ill-posedness of the correspond-
ing inverse problem. This is mainly caused by the high
degree of freedom and the relatively large noise. One at-
tempt to circumvent these di�culties is to use dual mod-
els. This article introduces a clustering based non-uniform
dual model construction. With this framework, �nite el-
ements are grouped to reduce the complexity in inverse
computations. The simulation and experiment results in-
dicated that the k-means clustering method did not only
preserve the sharp variations over conductivity mediums
but also greatly �ltered out artefacts found in the standard
approach.
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1 Introduction

Electrical Impedance Tomography is a radiation free imag-
ing method that can monitor e.g. dynamics of volume dis-
tribution in the lungs [1, 2]. It attempts to reveal an inner
conductivity distribution inside the human body by elec-
trical data obtained via electrodes attached on the skin.
By injecting an electrical current through some electrodes,
the induced voltages can be recorded, allowing to recon-
struct a conductivity image via the relation between cur-
rent and voltage information at the boundary. In a com-
mon routine of lung EIT experiments, electrodes are lo-
cated around a horizontal 2D plane across the human tho-
rax. For each EIT frame, currents are successively injected
into the human body through adjacent electrodes [3]. A
conductivity image is then reconstructed by collecting the
voltage measurements recorded from the remaining elec-
trodes. We denote the number of voltage measurements in
a frame by M.
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A common reconstruction strategy is to seek the solu-
tion of a nonlinear optimization problem using Tikhonov
regularization [4]. The mathematical formulation of such
optimization problem is

s = argmins ‖Vm − F (s)‖
2
2 + α

2 ∥∥s − sref∥∥22 , (1)

where s denotes a conductivity distribution in the domain,
Vm represents the voltage measurement on the boundary,
F(s) is a nonlinear function of s that represents the in-
duced boundary voltage with respect to s and the injected
currents, α is a regularization parameter and sref is a ref-
erence conductivity distribution.

A typical attempt to solve this nonlinear optimization
problem is to use a �nite element method under the as-
sumption that the conductivity in the domain is piecewise
constant [4]. Within this setup we could represent Vm as a
M × 1 vector and s as a N × 1 vector, where N denotes the
number of elements contained in the �nite element mesh.
The image reconstruction procedure consists of two inter-
active parts, namely the forward model and the inverse
solver. In the forward model, a boundary voltage function
F (s) can be calculated from the given parameters of the
�nite elements, while the inverse solver provides an esti-
mate how to update these parameters. From here on, all
discussions of this study are based on the �nite element
framework.

2 Methods

2.1 Gauss-Newton iterative method

To solve the nonlinear optimization problem (see Eq. 1),
we could consider a stepwise linear solution known as it-
erative Gauss-Newtonmethod (GN for short). According to
GN, the estimated conductivity distribution ŝ is approxi-
mated by the conductivity distributions sn, and F (sn+1) is
replaced by a linear approximation

F (sn+1) = F (sn) + Jn (sn+1 − sn)

where Jn is the Jacobian matrix evaluated at sn. The solu-
tion of Eq. 1 with respect to sn is signed to be sn+1 for the
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next iteration. Explicitly, the estimation is updated by

sn+1 =sn +
(
J*nJn + α2I

)−1
·
(
J*n (Vm − F (sn)) + α2

(
sref − sn

))
(2)

where I is the N × N identity matrix [4]. Usually, due to the
sparsity of Jn, the matrix J*nJn has a very large condition
number. For the purpose of stabilizing the calculations to
get a unique solution, a regularization penalty with pa-
rameter α is included in Eq. 1, hence also in Eq. 2.

2.2 Dual model

Although a �ner mesh can lead to a more precise calcula-
tion of F(s) in the forward model, its huge number of un-
known parameters the same mesh may result in an even
more severely ill-posed inverse problem. To circumvent
this di�culty, a dual model framework is used [5], whose
work�ow is depicted in Figure 1.

Figure 1: Dual model framework: The procedure starts with solving
a forward model under a �ne mesh. The coarser mesh in the bottom
right corner is used to solve the inverse problem. The solution is
mapped back to the �ne mesh for the next iteration.

2.3 An integrated algorithm

In this subsection, an approach for constructing a dual
mesh is demonstrated. Given a domain and the corre-
sponding �ne mesh, a �rst guess of the conductivity dis-
tribution can be achieved by applying the Gauss-Newton
method with this �ne mesh. In this step, it is enough to

quickly obtain an initial image in order to get a rough esti-
mation. Basedon the initial image, the k−means clustering
method is applied to roughly detect the underlying geom-
etry. Here the number of clusters is adjusted according to
the complexity of the underlying geometry shown in the
initial image as well as the number of elements in the �ne
mesh. The distance function employed by the k−means
clustering method can be a combination of the conduc-
tivity di�erence in the initial image and the Euclidian dis-
tance between the �nite elements. Eventually, an irregu-
lar coarser mesh is generated; each of its elements corre-
sponds to one cluster. It is essential tomodify the Jacobian
matrix for the coarsemesh. According to theoretical calcu-
lations [6], the new Jacobian matrix not only has smaller
size but also relatively larger entry values.

The algorithm (CGN, Clustering integrated GN) that in-
tegrates k−means clustering into the dual model frame-
work consists of the following steps:
1. Fix a �nite element mesh that is su�ciently �ne.
2. Calculate the initial reconstruction image using this

�ne mesh with a few iterations of Gauss-Newton
methodwith a stopping threshold veryhigher than the
optimum, or an advance �xed small number of itera-
tions.

3. Applying k−means clustering, segment the �nite ele-
ments of the �ne mesh into Nc clusters and construct
a coarser mesh with these Nc elements (dual model).

4. Calculate the corresponding Jacobianmatrix with size
Nc × M for the coarser mesh from the Jacobian matrix
for the �ne mesh.

5. Run the Gauss-Newton method iteratively with the
dual model to get the �nal image.

6. Optionally, further using the �nemesh, applying stan-
dard algorithms locally on the area of focus by forcing
the remained area as background could provide a bet-
ter image (lCGN).

Thework�owof this integrated algorithm is represented in
Figure 2.

It is worth to mention that the clustering based dual
mesh construction could be integrated with other inverse
problem solvers according to the same scheme. As a spe-
cial example, instead of using iterative GN method, an
alternative is to employ one step GN solver in the above
framework (see Subsection 3.2).
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Figure 2: The flowcharts of the clustering aided dual model frame-
work (CGN). Optional extension with subsequent locally applied GN
(lCGN).

3 Simulation and experimental
results

3.1 Simulations

To evaluate the performance of this integrated algorithm,
simulations were executed based on a circular �nite ele-
ment domainwith radius 1 (see Figure 3(a)). On the bound-
ary, 16 electrodes were placed equidistantly to inject cur-
rents and to get the voltage measurements. The stimulat-
ing currents were injected in the adjacent pattern to drive
the simulation. With the prede�ned background conduc-
tivity (s0 = 1.0 S·m−1) a measurement of the voltage de-
noted by Vh could be calculated. After embedding some
small contrasts into the background, another voltagemea-
surement denoted by Vih was simulated. Moreover, a 1%
white noise was added to the simulated measurements
Vih. All the simulated data were calculated through an
independent �nite element model (mesh in Figure 3(a))
to avoid the so called “inverse crime” problem [7]. While
in reconstruction a �xed �ne mesh was employed for for-
ward model calculations (mesh in Figure 3(b)). According
to Section 2.3 the coarser mesh is built on this �ne mesh.

The performance of the integrated algorithmwas com-
pared to the standard Gauss-Newton iterative algorithm.
The di�erence images between reconstructed conductivity

distributions and the background are shown in Figure 3. In
the subsequent simulations, the standard algorithms from
the EIDORS toolbox [8] were applied, where the regular-
ization parameter α in Eq. 1 was heuristically speci�ed to
be 0.01. In simulation, two iterations of the Gauss-Newton
algorithmswere employed to get the initial image; then �f-
teen clusters were obtained through the k-means method
with three inner iterations, and �nally the iterations based
on the dual model framework. For comparison, solely us-
ing the �nemesh, the standardGauss-Newtonmethodwas
iterated ten times to achieve its optimal solution. Viewing
the conductivity as a vector corresponds to the elements
of the �nemesh, the reconstruction errors of �fty indepen-
dent runs were summarized by l1 and l2 norm in Table 1.

Table 1: Mean reconstruction errors of �fty independent runs.

Method GN lCGN
l1 (S·m−1) 153.919 47.283
l2 (S·m−1) 5.543 3.865

Figure 3: Simulation with simple contrasts. Figure 3(a) shows the
ground truth with contrasts of conductivities 2.0Sm−1 and 0.5 Sm−1.
Figure 3(b) is the image obtained via ten iterations of standard
GN method, the computation time is 24.832 s. Figure 3(c) demon-
strates the piecewise constant conductivity map by applying three
iterations of GN on �fteen clusters (CGN). Figure 3(d) is the recon-
struction image by applying seven iterations of GN locally based on
Figure 3(c), the total computation time of the lCGN is 28.428 s.



B. Gong et al., A clustering based dual model framework for EIT imaging: �rst experimental results | 281

3.2 Experimental results

In this subsection experiments were implemented to
achieve the changes of conductivities between two ven-
tilation states, namely the start and end point of one in-
spiratory phase. The breathing data were acquired from
a healthy volunteer by the commercial EIT device (Pul-
moVista500, Draeger, Luebeck, Germany). Two groups of
comparisons were performed o� line to test the algorithms
(see Figure 4), the �rst group was between one step GN
solver and one step CGN, the second group was between
conjugate gradient solver (CG) and Clustering integrated
CG (CCG).

Figure 4: Image reconstruction of conductivity change using ex-
perimental data. Images use the same colour scheme. Upper row:
One step GN and one step CGN with the regularization parameter α
equals 0.01. Lower row: Iterative CG solver and CCG with the error
threshold equals 0.001. The clustering integrated algorithms (CGN,
CCG) employed ten clusters achieved from k-means method.

4 Discussion and conclusion

The reconstructed images (Figure 3, Figure 4) demonstrate
that in spite of reducing the degree of freedom in the in-
verse problem, the k-means method has the potential to
roughly preserve the geometry around the area of interest
through clustering. As indicated in the simulations and ex-
periments, the integrated method also �ltered out the un-
desired artefacts on the background. In addition, the sim-
ulation result (Figure 3 (d)) suggests that performing stan-
dard algorithms locally on the area of interest could im-
prove the �nal image.

A challenge for this integrated method is to achieve
an optimal segmentation of the initial image by k−means
clustering. Selection of parameters for clustering should
regard to the complexity of the contrasts, the number of
elements in the �ne mesh and the level of noise.

Further investigation might consider adaptively de-
termining the parameters, such as the number of clusters
or the distance function used in the k−means clustering
method, to get better andmore controllable segmentation.
In addition, individual CT information, e.g. incited by [9],
could provide a helpful source for clustering.
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