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Parylene C is well-known as an encapsulation material for medical implants. Within
the approach of miniaturization and automatization of a bone distractor,
piezoelectric actuators were encapsulated with Parylene C. The stretchability of
the polymer was investigated with respect to the encapsulation functionality of
piezoelectric chips. We determined a linear yield strain of 1% of approximately 12-
µm-thick Parylene C foil. Parylene C encapsulation withstands the mechanical
stress of a minimum of 5×105 duty cycles by continuous actuation. The
experiments demonstrate that elongation of the encapsulation on piezoelectric
actuators and thus the elongation of Parylene C up to 0.8 mm are feasible.
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1. Introduction

In modern medical technology, active implants are state-of-the-art. Examples of well-

established implants are cochlear implants or pacemakers. The European Medical Device

Regulation (MDR) defines an active implantable medical device (AIMD) as an implant

designed to be inserted, in whole or in part, into the human body by a surgical or medical

procedure or into a natural body orifice by a medical procedure and intended to remain

there after the procedure. Its operation depends on a source of energy other than energy

harvested for this purpose by the human body or by gravity, and which acts changing the

density or converting this energy. This type of implant requires a high degree of

miniaturization for patient compliance and automation for optimal therapeutic effect.

Within this innovative development of AIMDs lies the further development of bone

distractors. Specifically, distractor osteogenesis finds application for treating mandibular

hypoplasia, a dentofacial deformity requiring a combination of orthodontic and surgical

treatment (1). Distraction osteogenesis is an established methodology where new bone tissue is

naturally generated between two parts of a fractured bone based on the tension–stress effect

proceeding three phases: a latency phase after surgery, the distraction phase with the actual

separation of two bone ends, and the consolidation phase forming the new bone tissue (2–4).

During the distraction phase, distractors are manually activated with an adjusting screw

through a body opening using a distraction rod. These adjustments must be performed daily

for up to 6 months, depending on the treatment. Several complications are associated with

mandibular distractor osteogenesis, including the permanent risk of infection due to a

constantly existing body orifice, inappropriate distraction vector or inaccurate adjustment
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leading to pain for the patient or unsuccessful treatment, and

interference in the patient’s daily life through constant monitoring

and adjustment of the distraction process (5–7).

Automation and miniaturization of distractors is a potential

optimization to reduce the abovementioned complications to

enhance the affected patient’s quality of life. Especially within the

application of mandibular distraction osteogenesis, the

optimization is of utmost importance since the affected individuals

suffer not only from often underestimated esthetic issues but also

from functional reasons due to craniofacial microsomia.

For example, the principle of a linear inchworm piezoelectric

motor can be exploited for this purpose, which is small enough to

implant (8). Piezoelectric actuators are used for clamping and

changing the position of a shaft, thus keeping two parts of the

implant at a defined distance and moving them in a controlled

manner. Driving the piezoelectric actuators requires voltages of

typically up to several hundred volts (9). This makes it necessary to

provide suitable insulation especially when used in medical implants.

Parylene C is a well-known encapsulation polymer for electronic

circuits under harsh environments. Due to its advantageous

properties, such as chemical robustness, biocompatibility, and

sterilizability, it can also be used to encapsulate biomedical implants

(10). Deposited by a chemical vapor deposition (CVD) process

known as the Gorham process (11), di-p-xylylene as a precursor is

used to pyrolyze its dimers, generating reactive monomers to

sublimate on the surface by polymerization within the gas phase. The

resulting homogeneous Parylene C coating serves with its dielectric

strength of up to 343 V/µm (12, 13) as an excellent insulating material.

The long-term encapsulation properties have already been

tested thoroughly on rigid and flexible implant materials (14–16).

Further, Golda-Cepa et al. (17) gave a comprehensive overview of

Parylene C for biomedical applications and presented mechanical

testing and bending of Parylene C and compound material

coatings of different materials (18–20). However, the properties

of stretchable materials and devices, specifically of piezoelectric

actuators, have not yet been investigated by cyclic stretching.

This work evaluates the feasibility of Parylene C as an

encapsulation for piezoelectric actuators in medical implants. We

have used commercially available piezoelectric actuators to

examine the encapsulation properties through dielectric

breakdown tests after a sequential number of actuation cycles of

the actuators. Furthermore, the mechanical properties of Parylene

C were analyzed through tensile testing of Parylene C foils.
2. Materials and methods

2.1. Parylene C deposition

Parylene C was deposited using a Labcoater 300 (Plasma-Parylene

Systems GmbH, D-Rosenheim). Silane A-174 (Sigma-Aldrich) is used

as an adhesion promoter after an O2-plasma pretreatment (300 W,

5 min). The pressure during deposition was 2.0–4.0 Pa.

A coating thickness of 11.9 µm was deposited. The thickness

was determined on a Si-wafer piece with a UV-Vis Reflectometer

(Nanocalc-XR, Oceanoptics). Theoretically, Parylene C is
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considered pinhole-free starting from 1 µm (10), calculating with

a safety factor by a minimum of 10 for including possible defects

in layer homogeneity due to the manufacturing process (21).
2.2. Mechanical properties of Parylene C

Parylene foils were prepared by coating a Si-wafer with a

Parylene C layer. The steps of plasma pretreatment and the

application of an adhesion promoter were omitted. Prior to

deposition, a release layer was applied to the wafer by rinsing it

with dishwashing liquid diluted in deionized water. The coating

thickness measured on an untreated wafer piece was 11.9 µm.

Foils of 80.0 × 10.0 mm2 were cut using a scalpel. Tensile testing

was performed with a 50-N load cell (FMT310, Alluris D-Freiburg)

mounted on a universal testing machine (Alluris, D-Freiburg). The

Parylene foil was fixed by home-built clamps in the testing

machine. The distance between the clamps prior to tensile testing

was set to 50.0 mm. The displacement speed was set to 1.0 mm/min.
2.3. Encapsulation of piezoelectric chips

Piezoelectric chips with a height of 2.0 mm and a displacement of

2.0 µm (PA2JEW, Thorlabs) were contacted with enameled copper

wires (0.5 mm diameter). Preliminary tests were done using

commercially available piezoelectric chips with preattached silicone-

insulated wires. The preattached wires were replaced by enameled

copper wires for encapsulation optimization. The assembly was

placed in a 3D printed holder for protection and easier handling

(Figure 1A). Parylene C encapsulation of the piezoelectric chips

was performed using the protocol described in Section 2.1.
2.4. Duty cycle test process

The longtime stability was investigated for 10 Parylene C-

coated piezoelectric actuators. Five of the coated actuators were

subjected to a sequential duty cycle test process to determine the

longtime stability. In addition, five coated actuators were tested

by one continuous sequence of 5×105 duty cycles. Preliminary to

each duty cycle, the dielectric strength was tested by the protocol

mentioned in Section 2.5.

To deform the actuators and stress the coating, a square wave

with a frequency of 1 Hz was generated by a function generator

(Voltcraft 7202). The low frequency was chosen to avoid

resonance effects and to ensure a maximum displacement of the

actuator. In addition, 1 Hz is close to the frequency expected to

be used in the medical implant. The wave signal was amplified

using a piezo controller (MDT693B, Thorlabs) such that the

actuators were powered with a voltage between 0 V for the low

half-wave and 75 V for the high half-wave. After each sequence

of applied duty cycles, the dielectric strength was checked for

malfunction of the Parylene C coating. The number of sequential

duty cycles ranged between 1 and 5×105.
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FIGURE 1

(A) Piezoelectric chip contacted with enameled copper wires and placed inside a 3D printed holder. (B) Representative stress/strain diagram of Parylene
C. (C) Examination of the long-term performance of Parylene C encapsulation of piezoelectric actuators obtained by pulsing a specified amount of load
cycles and performing continuous and subsequent measurement of the breakdown strength, respectively.
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2.5. Measurement of the breakdown
strength

The breakdown strength of the coated piezo chips was measured

with an ST920IC high-voltage tester (Sourcetronic GmbH,

Germany) before and after each duty cycle test process. An

alternating voltage of 50 Hz was increased linearly to 75 Vrms

within 30 s, held for 60 s, and returned to 0 V within 30 s. The test

was considered passed if a current of 10 µA was not exceeded.

This threshold was set based on the setup’s internal leakage current.
2.6. Failure analysis

Localization of coating failures after a failed breakdown test was

performed by electrodeposition of copper. The sample was placed
Frontiers in Medical Technology 03
in a copper acetate solution, and a bias voltage of up to 5 V was

applied. As soon as a current of 50 µA was reached, the

electroplating process was stopped.
3. Results

3.1. Mechanical properties of Parylene C

The stress/strain curve obtained by tensile testing of five foils is

shown in Figure 1B. The stress increased with applied strain. Until

approximately 1% strain, a linear increase was observed. A

maximum stress was reached with a further increase of strain,

resulting in a yield strength of 42.5 ± 1.1 MPa. The stress

decreased once the yield strain of 2.58 ± 0.17% was exceeded. For
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the tested samples, Young’s modulus of 2.81 ± 0.06 GPa was

obtained.
3.2. Long-term performance of Parylene C
applied to piezoelectric actuators

The performance of Parylene C encapsulation on piezoelectric

actuators was evaluated by applying a specified number of pulses to

the actuators and then investigating the insulation properties of the

encapsulation by measuring the dielectric strength at 75 VRMS, see

Figure 1C. This process was repeated until an encapsulation failure

was measured.

As shown in Figure 1C, the encapsulation properties of five

actuators were evaluated in a sequential test with several

intermediate steps until a total number of 5×105 cycles were

reached. For one actuator, the encapsulation failed after 5×103

cycles. In a second test, five actuators were loaded with

continuous 5×105 cycles, and no actuator failed.
3.3. Challenges and stability of
encapsulation—preattached silicone-
insulated wires

Previous dielectric strength measurement revealed that the

encapsulation of the piezoelectric chips with the preassembled

insulated silicone wires was defective even before the chips were
FIGURE 2

(A,B) Optical micrographs of the failure of the Parylene C coating at the insu
failure is visible after electroplating with copper through a gray deposit. (C) S
insulated by a silicone sheath due to movement of the insulation.
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pulsed for the first time. Defect analysis through copper

electrodeposition revealed defects in the area where the wire was

stripped of its insulation (Figures 2A,B).

For these experiments using piezoelectric chips connected with

enameled copper wires, no other failure of the encapsulation on the

piezoelectric actuators at the critical connection point between the

wire and chip was observed before actuation.
4. Discussion

Determining the mechanical properties of the Parylene C foils

provided information about the produced layers with a thickness of

11.9 µm. The Youngs modulus was 2.81 GPa, which is within the

values in the literature of Hassler et al. (16) and von Metzen and

Stieglitz (22). The yield strength of 42.5 MPa was confirmed by

Hassler et al. Only the yield strain in the experiments performed

here was 2.58%, which is close to half of the value (4.0%)

determined by Metzen et al. and nearly a third of the minimum

yield strain (7.5%) determined by Hassler et al.

Based on the literature data, a correlation between the thickness

and an increasing Young’s modulus could be assumed, but this

assumption could not be confirmed with the varied yield

strength, yield strain, and deposition pressure values. Hence, the

coating conditions are of high relevance, causing discrepancies in

the resulting mechanical properties. The deposition pressure

influences the crystallinity of the polymer by the formation of
lation of the contact lead from two different piezo samples. The coating
uggested failure mechanism of the Parylene C coating on copper wires
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more polymerization centers with higher deposition pressure, thus

forming more and shorter polymer chains, which leads to more

amorphous Parylene C and increases the probability of inclusions

and voids (16, 23). In addition, possible contamination in the

precursor could lead to inhomogeneity in the molecular structure

of the layer or a higher inclusion of the processing gas (O2 or N)

during deposition, more precisely within the polymerization

phase on the surface (11).

However, the linear range of the resulting strain is within 1%.

Important for the investigations performed here is that the

maximum displacement of a piezo used in the experiments, is

2 µm. This value within the linear yield strain of 1% is equivalent

to 0.8 mm; thus, the Parylene C coating is sufficiently adequate

for this application of a piezoelectric actuator.

Duty cycle test procedures were used to test the long-term

behavior of the Parylene C coating on the piezoelectric

actuators. The encapsulation layer thickness on the piezoelectric

actuators of 11.9 µm was equivalent to the preliminary tests of

the Parylene C foils. The pulsing tests correspond to real

conditions of the application for the time a distractor is being

implanted. This can be up to 6 months, which corresponds to

5×105 pulses. Both the sequential and continuous duty cycles

were passed by nine piezo chips. Only one actuator passed the

sequential run of up to 5×103 duty cycles. The outlier could

have been caused by handling or possible weak points at the

soldered junction with the copper wires. A failure analysis with

copper electrodeposition showed the failure of the layer on

named areas. Despite this single sample, it was shown that

Parylene C has useful mechanical properties as an

encapsulation layer for expandable electrical components up to

an elongation of 0.8 mm.

The measurements were explicitly limited to the voltage of 75 V

because the Parylene C encapsulation of the actuators plays a role in

additional insulation protection of a planned miniaturized and

automated distractor prototype, thereby providing further not

necessarily needed insulation. And yet, this additional insulation

layer oblige warranty for the patient’s safety. The piezoelectric

stacks are supposed to be mounted within mechanically sliding

rails aimed to be encapsulated by a flexible biocompatible bellows

(24). Hence, the measurement does not meet the requirements of

standard DIN EN ISO 60601-2-2, ensuring the safety of patients

and users by a breakdown voltage of more than 1.0 kV of the

electrical insulation layer. However, this is secondary at this stage

of manufacturing, considering that the Parylene C layer on the

actuators is the additional encapsulation safety factor.

In the investigation of the encapsulation of piezo actuators

with preattached silicone-insulated copper wires, failures of the

coating were found in the region where the insulation was

stripped. The coating might have failed in this area because of

possible movement of the insulation on the copper wire

(Figure 2C) during handling of the piezo samples and

movement of the wire. The yield strain of Parylene C does not

seem to be sufficient to accommodate the movement of silicone

insulation, leading to a shearing of the coating and exposure of

the copper wire that was covered by the silicone insulation

during the Parylene deposition step.
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No such defects were found in the long-term experiments. In

these experiments, enameled copper wires were used for

contacting the piezo actuators, and thus, no movement of the

enamel on the copper wires had to be expected.
5. Conclusion and outlook

Within these experiments, it was shown that Parylene C as an

encapsulation material of 11.9 µm thickness for piezoelectric chips

withstands the mechanical stress of actuation of a minimum of

5×105 duty cycles. Based on additional tensile tests with Parylene

C foils and the determined linear strain of 1%, it can be

concluded that an elongation of piezoelectric actuators of up to

0.8 mm is possible without failure of the Parylene C layer.

Discrepancies of the tensile test results with Refs. (16) and (22)

might be explained by slightly different coating conditions.

Therefore, further investigations of the influences of deposition

pressure and coating thickness on the mechanical properties

must be conducted.

Care must be taken when choosing suitable electrical cable

connections, as the Parylene C coating seems susceptible to

silicone-insulated wires, leading to defective insulation.
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