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Abstract: Surgical tool detection is an important aspect for 
recognising surgical activities and understanding surgical 
workflow. Laparoscopic videos represent an information 
source that can be used for recognising surgical tools. 
However, manual labelling of tool incidence and location in 
such data is extremely time intensive. Therefore, weakly-
supervised approaches have been developed to perform tool 
localisation. In this study, three types of spatial pooling 
methods were implemented to evaluate the influence of each 
method on the performance of weakly-supervised model. The 
best achieved performance was a mean average precision 
(mAP) of 94% for tool classification and a f1-score of 70% for 
tool localisation. Experimental results showed the importance 
of selecting an appropriate pooling function to enhance model 
performance. 
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1 Introduction 

Identifying surgical tools appearing in surgical images is a key 
component to recognising surgical activities and 
understanding the current situation of surgery. Conceiving 
surgical workflow enables the development of context-
awareness systems (CAS) [1–3]. Potential applications for 
CAS include predicting the course of upcoming surgical 
activities [4], supporting surgical team in making decisions [1] 
and alerting them about possible hazards. Additionally, the 
resources of the surgical department could be optimised by 
predicting the time remaining for the surgery [5,6]. 

Laparoscopic videos offer a great source of visual 
information that can potentially be used to detect the surgical 
tools. Image-based approaches have been proposed for 
classifying surgical tools in laparoscopic images. In [7], a 
convolutional neural network (CNN) was proposed for 
recognising surgical phases and tools in cholecystectomy 
procedures. A CNN model trained using loss-sensitive 
learning was introduced in [8] for surgical tool classification. 
In other studies, temporal dependencies were incorporated 
with spatial information to improve classification performance 
of surgical tools. In [9], long short-term memory (LSTM) 
model was used to learn temporal information in short video 
clips. In a subsequent work, temporal clues across video 
sequences and along the complete laparoscopic video were 
leveraged [10]. 

Other studies proposed approaches capable of generating 
localisation bounding boxes and/or segmentation masks for 
the surgical tools presented in the image [11–15]. Most of the 
proposed approaches were based on deep learning models that 
required a huge amount of labelled data. However, in 
[11,14,15], weakly-supervised learning approaches were 
introduced. These approaches used solely binary signals of 
surgical tool presence. Nwoye et al. [11] proposed a network 
consisting of a CNN and a convolutional LSTM to perform 
classification, localisation and tracking of surgical tools.  Jalal 
et al. adapted the ResNet-50 model to perform tool localisation 
in weakly supervised manner by adding a multi-map 
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convolutional layer and attention modules [14]. A temporal 
model was added to the previous approach to perform 
additionally tool classification and surgical phase recognition 
in [15].  

In the aforementioned tool localisation approaches 
[11,14,15], a spatial pooling layer was required to get the 
confidence of tool presence using the localisation map of the 
corresponding tool. To date, no studies have investigated the 
influence of the spatial pooling function on the classification 
performance. In this work, the weakly-supervised learning 
approach introduced in [14] was used to evaluate the 
performance of different spatial pooling methods on tool 
detection. Three types of spatial pooling were investigated, 
namely global average pooling (GAP), MinMax pooling 
(MMP), and evidence ratio pooling (ERP). 

2 Methodology 

A CNN model was built to perform surgical tool localisation 
and classification following the architecture introduced in 
[14]. The architecture consists of a base CNN model (ResNet-
50 [16]), attention modules, multi-map convolutional layer 
and pooling layers. Figure 1 depicts the model architecture. 

2.1 Architecture 

The core component of the tool detection approach was 
ResNet-50 model, since this architecture achieved high 
performance for classifying surgical tools as presented in [10]. 
The architecture of this model is composed of five 
convolutional blocks. Four attention modules were added after 
the second, third, fourth and fifth blocks to improve feature 
representation (see Figure 1). The attention modules were of 
type Squeeze-and-Excitation (SE) modules [17]. Similar to 
[11,14], the stride of convolutional layers in the last two blocks 
was decreased to enhance spatial resolution of generated 
feature maps. 

The features learnt by the last three attention modules 
were combined and passed to a convolutional layer.  This 

convolutional layer was employed to generate localisation 
maps for every surgical tool. The layer has a kernel size of 3×3 
and a filter size of 4×7, and thus, four localisation maps were 
yielded for each of the seven surgical tools.  

2.2 Pooling 

2.2.1 Class-wise pooling 

A class-wise pooling was implemented to combine the 
localisation maps generated by the multi-map convolutional 
layer into a single map for each surgical tool. The localisation 
map of a surgical tool was computed by using the max pooling 
operator. The class-wise pooling layer produces seven 
localisation maps, each for a surgical tool. 

2.2.2 Spatial Pooling 

A spatial pooling layer was applied to aggregate the 
localisation maps into features. The features were provided 
into a fully-connected layer (FC) to perform surgical tool 
classification. The FC layer had seven nodes and a sigmoid 
activation function.  

Three pooling functions were implemented which are 
global average pooling (GAP), MinMax pooling (MMP) [18–
20], and evidence ratio pooling (ERP). The performance of 
surgical tool classification and localisation was evaluated for 
each pooling function. GAP computes the average of every 
localisation map yielded from the class-wise pooling layer, 
and thus, a vector of seven features was the output of GAP. 

MMP was applied according to Equation 1. This pooling 
method considered a number of the highest and lowest 
elements of each localisation map, denoted 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑛𝑛𝑙𝑙𝑡𝑡𝑙𝑙, 
respectively. 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑛𝑛𝑙𝑙𝑡𝑡𝑙𝑙were set to 50. 𝐡𝐡top and 𝐡𝐡low are the 
localisation map elements with the highest and lowest scores, 
respectively. The lowest score elements were weighted by a 
factor 𝛼𝛼. Based on the ablation study conducted in [19] 𝛼𝛼 was 
set to 0.6. 

Figure 1:  Architecture of the implemented model. 
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𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡

∑𝐡𝐡𝐭𝐭𝐭𝐭𝐭𝐭 + 𝛼𝛼
𝑛𝑛𝑙𝑙𝑡𝑡𝑙𝑙

∑𝐡𝐡𝐥𝐥𝐭𝐭𝐥𝐥   (1) 

The third pooling method (ERP) transfers every 
localisation map into two features. The features are the top 
evidence ratio (TER) and low evidence ratio (LER). TER and 
LER are calculated as shown in Equation 2 and 3. 

𝑀𝑀𝑃𝑃𝑃𝑃 =
∑ xi,j𝑖𝑖,𝑗𝑗

ℎ.𝑤𝑤
  , xi,j = 1 for x > 0.9  (2) xi,j = 0, otherwise  

𝑁𝑁𝑃𝑃𝑃𝑃 =
∑ xi,j𝑖𝑖,𝑗𝑗

ℎ.𝑤𝑤
  , xi,j = 1 for x < 0.1  (3) xi,j = 0, otherwise  

where h and w are height and width of the tool localisation 
map, respectively. 

2.3 Dataset 
 The cholec80 dataset introduced by Twinanda et al. [7] was 
used. The dataset contains laparoscopic videos of 80 
cholecystectomy procedures. The videos were labelled for 
surgical tools and surgical phases. Seven surgical tools were 
used in the Cholec80 procedures. The model was trained using 
the first 40 videos of Cholec80 dataset and their tool binary 
labels. The remaining videos were used to evaluate the 
performance for surgical tool classification. The model learnt 
tool localisation in weakly-supervised manner. The surgical 
tools in five videos were labelled with bounding boxes to 
evaluate the model performance for tool localisation.  

3 Results 
 Surgical tool classification and localisation were evaluated for 
different spatial pooling methods. Average precision (AP) was 
used to evaluate the performance of classifying surgical tools. 
Figure 2 shows the average precision achieved by the three 
spatial pooling methods. 

The f1-score metric was used to evaluate localisation 
performance. F1-score was computed based on the tool 
presence confidence and the intersection over union (IOU) as 
in [14].  F1-scores for different spatial pooling (GAP, MMP 
and ERP) are presented in Figure 3.  

4 Discussion 
This work presents a comparative evaluation for various 
spatial pooling methods. Each of the pooling methods was 
integrated into a deep learning pipeline that was weakly-
supervised trained to perform surgical tool classification and 
localisation. 

MMP method achieved the best performance for surgical 
tools classification and localisation with a mean AP of 94.1% 
and a f1-score of 70%, respectively. Conventional pooling 
methods compute the average of a feature map (i.e., GAP) or 
consider solely the region with the maximum score (i.e., max 
pool). On the contrary, MMP does not use only the maximum 
scoring element in the map since it can be an outlier and cause 
misclassification. Hence, MMP consider a number of elements 
that have the highest score. Additionally, some minimum 
scoring elements are considered as a supportive information 
for the absence of a surgical tool. Thus, MMP achieved better 
performance than conventional pooling operators such as GAP 
which resulted in 86.6% mean AP and 57% f1-score.  

On the other hand, ERP uses the percentage of high 
scoring (higher than 0.9) and low scoring (lower than 0.1) 
elements in the localisation map as an evidence of tool 
presence and tool absence, respectively. However, results 
showed that the ERP method had a lower classification and 
localisation performance than GAP and MMP. Due to the 
fixed upper and lower threshold in ERP method, no element 
was selected when the maximum score in the map was less 
than the upper threshold or when the minimum score was 
higher than the lower threshold. Consequently, the model 
failed to detect surgical tools in many frames. 

GAP and MMP methods showed high classification 
performance for all surgical tools. Scissors were the only 
surgical tool that was classified using MMP with an AP less 
than 90%. Both MMP and GAP had also the lowest 
localisation performance for scissors. On the other hand, MMP 
method achieved the best classification performance for hook 
with an AP of 99%. However, localisation performance for 

Figure 2: Average precision of surgical tool presence detection 
using spatial pooling methods (GAP, MMP and ERP). 
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Figure 3: F1-score of surgical tool localisation using spatial 
pooling methods (GAP, MMP and ERP). 
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hook (f1-score of 60%) was lower than some tools such as 
clipper and bipolar. This lower localisation performance for 
the hook was due to the deviation between ground truth and 
detected bounding boxes. Bounding boxes of the ground truth 
were around the tool tip. As the model was trained solely on 
binary tool presence labels, the generated bounding boxes 
contained in many instances, in addition to the hook tip, the 
bottom part of the shaft. This deviation decreased IOU, and 
thus, lower f1-score was obtained for hook. 

5 Conclusion 
This study demonstrates the effect of the pooling method on 
the performance of a deep model developed to detect the type 
and location of surgical tools in laparoscopic images. 
Experimental results show the role of spatial pooling type on 
model performance. GAP and MMP can obtain more effective 
features than ERP. This work was conducted using a single 
dataset, and therefore, in future work, spatial pooling methods 
will be evaluated on data obtained from different sources. 
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